Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings
David, G. C., & Eriksson-Bique, S. (2024). Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings. Annales de l'Institut Fourier, 74(3), 973-1016. https://doi.org/10.5802/aif.3606
Julkaistu sarjassa
Annales de l'Institut FourierPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We study metric measure spaces that admit "thick" families of rectifiable curves or curve fragments, in the form of Alberti representations or curve families of positive modulus. We show that such spaces cannot be bi-Lipschitz embedded into any Euclidean space unless they admit some "infinitesimal splitting": their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z x R k for some k 1. We also provide applications to conformal dimension and give new proofs of some previously known non-embedding results.
Julkaisija
Institut FourierISSN Hae Julkaisufoorumista
0373-0956Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/233322602
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Equality of different definitions of conformal dimension for quasiself-similar and CLP spaces
Eriksson-Bique, Sylvester (Suomen matemaattinen yhdistys, 2024)We prove that for a quasiself-similar and arcwise connected compact metric space all three known versions of the conformal dimension coincide: the conformal Hausdorff dimension, conformal Assouad dimension and Ahlfors ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
Reciprocal lower bound on modulus of curve families in metric surfaces
Rajala, Kai; Romney, Matthew (Suomalainen tiedeakatemia, 2019)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.