The Hajłasz Capacity Density Condition is Self-improving
Canto, J., & Vähäkangas, A. V. (2022). The Hajłasz Capacity Density Condition is Self-improving. Journal of Geometric Analysis, 32(11), Article 276. https://doi.org/10.1007/s12220-022-00979-z
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2022Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2022
We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary Poincaré inequalities, adapts Keith–Zhong techniques for establishing local Hardy inequalities and applies Koskela–Zhong arguments for proving self-improvement properties of local Hardy inequalities. This leads to a characterization of the Hajłasz capacity density condition in terms of a strict upper bound on the upper Assouad codimension of the underlying set, which shows the self-improvement property of the Hajłasz capacity density condition.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1050-6926Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159245442
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. J.C. is supported by supported by the Ministerio de Economía y Competitividad (Spain) through Grant Nos. PID2020-113156GB-I00 and SEV-2017-0718, and by Basque Government through Grant Nos. IT-641-13 and BERC 2018-2021 and “Ayuda para la formación de personal investigador no doctor".Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Self-improvement of pointwise Hardy inequality
Eriksson-Bique, Sylvester; Vähäkangas, Antti V. (American Mathematical Society, 2019)We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves. -
Maximal function estimates and self-improvement results for Poincaré inequalities
Kinnunen, Juha; Lehrbäck, Juha; Vähäkangas, Antti; Zhong, Xiao (Springer Berlin Heidelberg, 2019)Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, ... -
Gradient estimates for heat kernels and harmonic functions
Coulhon, Thierry; Jiang, Renjin; Koskela, Pekka; Sikora, Adam (Elsevier, 2020)Let (X,d,μ) be a doubling metric measure space endowed with a Dirichlet form E deriving from a “carré du champ”. Assume that (X,d,μ,E) supports a scale-invariant L2-Poincaré inequality. In this article, we study the following ... -
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ... -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.