dc.contributor.author | Chen, Lu | |
dc.contributor.author | Miettinen, Kaisa | |
dc.contributor.author | Xin, Bin | |
dc.contributor.author | Ojalehto, Vesa | |
dc.date.accessioned | 2022-09-26T05:00:20Z | |
dc.date.available | 2022-09-26T05:00:20Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Chen, L., Miettinen, K., Xin, B., & Ojalehto, V. (2023). Comparing reference point based interactive multiobjective optimization methods without a human decision maker. <i>Journal of Global Optimization</i>, <i>85</i>(3), 757-788. <a href="https://doi.org/10.1007/s10898-022-01230-3" target="_blank">https://doi.org/10.1007/s10898-022-01230-3</a> | |
dc.identifier.other | CONVID_151774340 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83316 | |
dc.description.abstract | Interactive multiobjective optimization methods have proven promising in solving optimization problems with conflicting objectives since they iteratively incorporate preference information of a decision maker in the search for the most preferred solution. To find the appropriate interactive method for various needs involves analysis of the strengths and weaknesses. However, extensive analysis with human decision makers may be too costly and for that reason, we propose an artificial decision maker to compare a class of popular interactive multiobjective optimization methods, i.e., reference point based methods. Without involving any human decision makers, the artificial decision maker works automatically to interact with different methods to be compared and evaluate the final results. It makes a difference between a learning phase and a decision phase, that is, learns about the problem based on information acquired to identify a region of interest and refines solutions in that region to find a final solution, respectively. We adopt different types of utility functions to evaluation solutions, present corresponding performance indicators and propose two examples of artificial decision makers. A series of experiments on benchmark test problems and a water resources planning problem is conducted to demonstrate how the proposed artificial decision makers can be used to compare reference point based methods. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Global Optimization | |
dc.rights | CC BY 4.0 | |
dc.subject.other | multicriteria optimization | |
dc.subject.other | interactive multiobjective optimization | |
dc.subject.other | learning phase | |
dc.subject.other | decision phase | |
dc.subject.other | performance comparison | |
dc.subject.other | reference point | |
dc.title | Comparing reference point based interactive multiobjective optimization methods without a human decision maker | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202209264655 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Multiobjective Optimization Group | fi |
dc.contributor.oppiaine | Päätöksen teko monitavoitteisesti | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Multiobjective Optimization Group | en |
dc.contributor.oppiaine | Decision analytics utilizing causal models and multiobjective optimization | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 757-788 | |
dc.relation.issn | 0925-5001 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 85 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 287496 | |
dc.subject.yso | interaktiivisuus | |
dc.subject.yso | päätöksenteko | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | monitavoiteoptimointi | |
dc.subject.yso | päätöksentukijärjestelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10823 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p32016 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27803 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s10898-022-01230-3 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | We would like to thank the International Graduate Exchange Program of Beijing Institute of Technology, the National Outstanding Youth Talents Support Program (Grant 61822304), the Basic Science Center Programs of NSFC (Grant 62088101), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), the Shanghai Municipal Commission of Science and Technology Project (19511132101), and the Academy of Finland (Grant 287496) for the financial support. This research is related to the thematic research area DEMO jyu.fi/demo of the University of Jyväskylä. | |
dc.type.okm | A1 | |