An Approach to the Automatic Comparison of Reference Point-Based Interactive Methods for Multiobjective Optimization
Podkopaev, D., Miettinen, K., & Ojalehto, V. (2021). An Approach to the Automatic Comparison of Reference Point-Based Interactive Methods for Multiobjective Optimization. IEEE Access, 9, 150037-150048. https://doi.org/10.1109/access.2021.3123432
Julkaistu sarjassa
IEEE AccessPäivämäärä
2021Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2021 the Authors
Solving multiobjective optimization problems means finding the best balance among multiple conflicting objectives. This needs preference information from a decision maker who is a domain expert. In interactive methods, the decision maker takes part in an iterative process to learn about the interdependencies and can adjust the preferences. We address the need to compare different interactive multiobjective optimization methods, which is essential when selecting the most suited method for solving a particular problem. We concentrate on a class of interactive methods where a decision maker expresses preference information as reference points, i.e., desirable objective function values. Comparison of interactive methods with human decision makers is not a straightforward process due to cost and reliability issues. The lack of suitable behavioral models hampers creating artificial decision makers for automatic experiments. Few approaches to automating testing have been proposed in the literature; however, none are widely used. As a result, empirical performance studies are scarce for this class of methods despite its popularity among researchers and practitioners.We have developed a new approach to replace a decision maker to automatically compare interactive methods based on reference points or similar preference information. Keeping in mind the lack of suitable human behavioral models, we concentrate on evaluating general performance characteristics. Such an evaluation can partly address the absence of any tests and is appropriate for screening methods before more rigorous testing. We have implemented our approach as a ready-to-use Python module and illustrated it with computational examples.
...
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
2169-3536Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101729530
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Towards explainable interactive multiobjective optimization : R-XIMO
Misitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple ... -
Integration of lot sizing and safety strategy placement using interactive multiobjective optimization
Kania, Adhe; Sipilä, Juha; Misitano, Giovanni; Miettinen, Kaisa; Lehtmäki, Jussi (Elsevier, 2022)We address challenges of unpredicted demand and propose a multiobjective optimization model to integrate a lot sizing problem with safety strategy placement and optimize conflicting objectives simultaneously. The novel ... -
Interactivized : Visual Interaction for Better Decisions with Interactive Multiobjective Optimization
Hakanen, Jussi; Radoš, Sanjin; Misitano, Giovanni; Saini, Bhupinder S.; Miettinen, Kaisa; Matković, Krešimir (IEEE, 2022)In today’s data-driven world, decision makers are facing many conflicting objectives. Since there is usually no solution that optimizes all objectives simultaneously, the aim is to identify a solution with acceptable ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.