Comparing reference point based interactive multiobjective optimization methods without a human decision maker
Chen, L., Miettinen, K., Xin, B., & Ojalehto, V. (2023). Comparing reference point based interactive multiobjective optimization methods without a human decision maker. Journal of Global Optimization, 85(3), 757-788. https://doi.org/10.1007/s10898-022-01230-3
Julkaistu sarjassa
Journal of Global OptimizationPäivämäärä
2023Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© The Author(s) 2022
Interactive multiobjective optimization methods have proven promising in solving optimization problems with conflicting objectives since they iteratively incorporate preference information of a decision maker in the search for the most preferred solution. To find the appropriate interactive method for various needs involves analysis of the strengths and weaknesses. However, extensive analysis with human decision makers may be too costly and for that reason, we propose an artificial decision maker to compare a class of popular interactive multiobjective optimization methods, i.e., reference point based methods. Without involving any human decision makers, the artificial decision maker works automatically to interact with different methods to be compared and evaluate the final results. It makes a difference between a learning phase and a decision phase, that is, learns about the problem based on information acquired to identify a region of interest and refines solutions in that region to find a final solution, respectively. We adopt different types of utility functions to evaluation solutions, present corresponding performance indicators and propose two examples of artificial decision makers. A series of experiments on benchmark test problems and a water resources planning problem is conducted to demonstrate how the proposed artificial decision makers can be used to compare reference point based methods.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0925-5001Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/151774340
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
We would like to thank the International Graduate Exchange Program of Beijing Institute of Technology, the National Outstanding Youth Talents Support Program (Grant 61822304), the Basic Science Center Programs of NSFC (Grant 62088101), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), the Shanghai Municipal Commission of Science and Technology Project (19511132101), and the Academy of Finland (Grant 287496) for the financial support. This research is related to the thematic research area DEMO jyu.fi/demo of the University of Jyväskylä. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
NAUTILUS Navigator : free search interactive multiobjective optimization without trading-off
Ruiz, Ana B.; Ruiz, Francisco; Miettinen, Kaisa; Delgado-Antequera, Laura; Ojalehto, Vesa (Springer US, 2019)We propose a novel combination of an interactive multiobjective navigation method and a trade-off free way of asking and presenting preference information. The NAUTILUS Navigator is a method that enables the decision maker ... -
An Approach to the Automatic Comparison of Reference Point-Based Interactive Methods for Multiobjective Optimization
Podkopaev, Dmitry; Miettinen, Kaisa; Ojalehto, Vesa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Solving multiobjective optimization problems means finding the best balance among multiple conflicting objectives. This needs preference information from a decision maker who is a domain expert. In interactive methods, the ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.