Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, P., Bandaru, S., Afsar, B., & Miettinen, K. (2022). Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods. In J. E. Fieldsend (Ed.), GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 1803-1811). ACM. https://doi.org/10.1145/3520304.3533955
Toimittajat
Päivämäärä
2022Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance among conflicting objectives. Several interactive methods have been developed in the literature. However, choosing the most suitable interactive method for a given problem can prove challenging and appropriate indicators are needed to compare interactive methods. Some indicators exist for a priori methods, where preferences are provided at the beginning of the solution process. We present some numerical experiments that illustrate why these indicators are not suitable for interactive methods. As the main contribution of this paper, we propose a set of desirable properties of indicators for assessing interactive methods as the first step of filling a gap in the literature. We discuss each property in detail and provide simple examples to illustrate their behavior.
Julkaisija
ACMEmojulkaisun ISBN
978-1-4503-9268-6Konferenssi
Genetic and Evolutionary Computation ConferenceKuuluu julkaisuun
GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference CompanionAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/150896047
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Profilointi, SALisätietoja rahoituksesta
This research was partly supported by the Academy of Finland (grant no 311877 and 322221) and is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multi-objective Optimization.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Assessing the Performance of Interactive Multiobjective Optimization Methods : A Survey
Afsar, Bekir; Miettinen, Kaisa; Ruiz, Francisco (Association for Computing Machinery (ACM), 2021)Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time ... -
An experimental design for comparing interactive methods based on their desirable properties
Afsar, Bekir; Silvennoinen, Johanna; Ruiz, Francisco; Ruiz, Ana B.; Misitano, Giovanni; Miettinen, Kaisa (Springer Science+Business Media, 2024)In multiobjective optimization problems, Pareto optimal solutions representing different tradeoffs cannot be ordered without incorporating preference information of a decision maker (DM). In interactive methods, the DM ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Saini, Bhupinder Singh; Chakrabarti, Debalay; Chakraborti, Nirupam; Shavazipour, Babooshka; Miettinen, Kaisa (Elsevier BV, 2023)Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.