Show simple item record

dc.contributor.authorChen, Lu
dc.contributor.authorMiettinen, Kaisa
dc.contributor.authorXin, Bin
dc.contributor.authorOjalehto, Vesa
dc.date.accessioned2022-09-26T05:00:20Z
dc.date.available2022-09-26T05:00:20Z
dc.date.issued2023
dc.identifier.citationChen, L., Miettinen, K., Xin, B., & Ojalehto, V. (2023). Comparing reference point based interactive multiobjective optimization methods without a human decision maker. <i>Journal of Global Optimization</i>, <i>85</i>(3), 757-788. <a href="https://doi.org/10.1007/s10898-022-01230-3" target="_blank">https://doi.org/10.1007/s10898-022-01230-3</a>
dc.identifier.otherCONVID_151774340
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83316
dc.description.abstractInteractive multiobjective optimization methods have proven promising in solving optimization problems with conflicting objectives since they iteratively incorporate preference information of a decision maker in the search for the most preferred solution. To find the appropriate interactive method for various needs involves analysis of the strengths and weaknesses. However, extensive analysis with human decision makers may be too costly and for that reason, we propose an artificial decision maker to compare a class of popular interactive multiobjective optimization methods, i.e., reference point based methods. Without involving any human decision makers, the artificial decision maker works automatically to interact with different methods to be compared and evaluate the final results. It makes a difference between a learning phase and a decision phase, that is, learns about the problem based on information acquired to identify a region of interest and refines solutions in that region to find a final solution, respectively. We adopt different types of utility functions to evaluation solutions, present corresponding performance indicators and propose two examples of artificial decision makers. A series of experiments on benchmark test problems and a water resources planning problem is conducted to demonstrate how the proposed artificial decision makers can be used to compare reference point based methods.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Global Optimization
dc.rightsCC BY 4.0
dc.subject.othermulticriteria optimization
dc.subject.otherinteractive multiobjective optimization
dc.subject.otherlearning phase
dc.subject.otherdecision phase
dc.subject.otherperformance comparison
dc.subject.otherreference point
dc.titleComparing reference point based interactive multiobjective optimization methods without a human decision maker
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202209264655
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange757-788
dc.relation.issn0925-5001
dc.relation.numberinseries3
dc.relation.volume85
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber287496
dc.subject.ysointeraktiivisuus
dc.subject.ysopäätöksenteko
dc.subject.ysokoneoppiminen
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopäätöksentukijärjestelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10823
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10898-022-01230-3
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationWe would like to thank the International Graduate Exchange Program of Beijing Institute of Technology, the National Outstanding Youth Talents Support Program (Grant 61822304), the Basic Science Center Programs of NSFC (Grant 62088101), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), the Shanghai Municipal Commission of Science and Technology Project (19511132101), and the Academy of Finland (Grant 287496) for the financial support. This research is related to the thematic research area DEMO jyu.fi/demo of the University of Jyväskylä.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0