On Limits at Infinity of Weighted Sobolev Functions
Eriksson-Bique, S., Koskela, P., & Nguyen, K. (2022). On Limits at Infinity of Weighted Sobolev Functions. Journal of Functional Analysis, 283(10), Article 109672. https://doi.org/10.1016/j.jfa.2022.109672
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2022Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2022 The Author(s). Published by Elsevier Inc.
We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken.
First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ.
As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1
<∞), which depend on the integrability degree of its gradient.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/151576931
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The first author was supported by the Academy of Finland grant # 345005. The second author and third author were supported by the Academy of Finland grant # 323960.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ... -
Traces of weighted function spaces : Dyadic norms and Whitney extensions
Koskela, Pekka; Soto, Tomás; Wang, Zhuang (Springer, 2017)The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950’s. In ... -
Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods
Repin, Sergey (Springer, 2019)We consider inequalities of the Poincaré–Steklov type for subspaces of H1 -functions defined in a bounded domain Ω∈Rd with Lipschitz boundary ∂Ω . For scalar valued functions, the subspaces are defined by zero mean ... -
Existence and uniqueness of ρ(x)-harmonic functions for bounded and unbounded ρ(x)
Keisala, Jukka (University of Jyväskylä, 2011) -
Classical flows of vector fields with exponential or sub-exponential summability
Ambrosio, Luigi; Nicolussi Golo, Sebastiano; Serra Cassano, Francesco (Elsevier BV, 2023)We show that vector fields b whose spatial derivative Dx b satisfies a Orlicz summability condition have a spatially continuous representative and are well-posed. For the case of sub-exponential summability, their flows ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.