Bochner-integraali ja Radon-Nikodym -ominaisuus
Tutkielma tarkastelee Banach-avaruuksien vektoriarvoista Bochner-integraalia. Integraali määritellään yksinkertaisille kuvauksille Lebesgue-integraalia ja avaruuden täydellisyyttä käyttäen. Tämän jälkeen tutustutaan vektoriarvoisten joukkokuvausten eli vektorimittojen teoriaan. Lopuksi tutkitaan Banach-avaruuden Radon-Nikodym -ominaisuutta, joka yhdistää vektorimittojen ja Bochner-integraalin teorian sekä vastaa kysymykseen, voidaanko annettu vektorimitta esittää integroituvan kuvauksen Bochner-integraalina. Avaruudet, joilla on tämä ominaisuus omaavat mielenkiintoisia rakenteita sekä topologisesta että geometrisesta näkökulmasta.
Myöhempien lukujen osalta on olennaista tuntea Banach-avaruuksien ja Lebesgue-integraaliin liittyvä perusteoria. Ensimmäinen luku käy läpi normiavaruuksien teoriaa painottamalla lineaarikuvauksia ja listaamalla keskeisimmät tulokset, kuten Hahn-Banach -lauseen ja sen seuraukset. Funktionaalianalyyttinen osuus päätetään heikon topologian määritelmään. Viimeinen aliluku käsittelee mittojen, yksinkertaisen kuvausten, Lebesgue-integraalien ja L^p-avaruuksien aihealueet.
Toisessa luvussa käsitellään mitallisia kuvauksia ja Bochner-integraalia. Mitalliset kuvaukset ovat niitä kuvauksia, joille integraali on hyvin määritelty ja joille integraali voi ylipäätään olla olemassa. Mitallisuustyyppejä on useampia, joista olennaisimmat ovat mu-mitallisuus ja heikko mitallisuus. Käsitteet liittyvät läheisesti toisiinsa Pettisin mitallisuuslauseen kautta. Tämän jälkeen määritellään Bochner-integraali yksinkertaisten kuvausten integraalien Cauchy-jonon raja-arvona. Teoria alkaa perustuloksista ja myöhemmin nähdään, että integroituvuuteen riittää tarkastella vain reaaliarvoista normikuvausta viittaamatta yksinkertaisiin kuvauksiin. Integraalien keskeisenä tuloksena saadaan suljettuihin lineaarikuvauksiin liittyvä Hillen lause. Lopuksi käsitellään Bochner-L^p-avaruudet ja heikosti mitallisten kuvausten Pettis-integraali.
Mittojen käsitettä voidaan tarkastella myös vektoriarvoisille joukkokuvauksille, jolloin saadaan vektorimittojen käsite. Kolmannessa luvussa tutustutaan vektorimittoihin, näiden variaatioihin sekä vektorimittojen Banach-avaruuksiin. Lopuksi tutkitaan Pettis-integraalia vektorimittana.
Viimeisessä luvussa käsitellään Radon-Nikodym -ominaisuutta. Jokainen absoluuttisesti jatkuva reaaliarvoinen äärellinen mitta voidaan esittää toisen mitan suhteen integraalina: tämä tulos tunnetaan Radon-Nikodym -lauseena, jolle annetaan todistus. Yleisissä Banach-avaruuksissa voidaan määritellä vastaava asetelma, mutta osoittautuu, että jokaisella avaruudella ei ole tätä esitysominaisuutta. Luvun tavoitteena on näyttää erilaisia ehtoja Radon-Nikodym -ominaisuudelle. Ensimmäisenä aloitetaan L^1-avaruuden operaattoreiden Riesz-esitettävyydestä. Tämän jälkeen siirrytään lommoontuviin (eng. dentable) joukkoihin ja konveksisuuteen. Lopuksi esitetään joitakin Radon-Nikodym -ominaisuuden karakterisointeja, kuten Banach-arvoisten absoluuttisesti jatkuvien kuvausten differentioituvuus.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29755]
License
Related items
Showing items with similar title or keywords.
-
Moniulotteinen Riemannin integraali
Kattelus, Elina (2023)Tässä tutkielmassa tutustutaan moniulotteiseen Riemannin integraaliin ja sen taustalla oleviin lauseisiin ja todistuksiin. Riemannin integraali saadaan Darboux’n summien raja-arvona integrointivälin jakoa tihennettäessä, ... -
Lebesguen integraali - Rieszin määritelmä
Lehtonen, Taru (2016)Tutkielmassa tarkastellaan ensin Riemannin integraalia ja sen ongelmia rajankäyntitilanteissa. Suurin ongelma rajankäynnissä on, että Riemannintegraalien jonon raja-arvo ei välttämättä aina ole sama kuin rajafunktion Rie ... -
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
Le Donne, Enrico; Rajala, Tapio; Walsberg, Erik (American Mathematical Society, 2018)We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional ... -
Hilbertin avaruudet ja kompaktit operaattorit
Pajala, Topi (2020)Tässä työssä tutkitaan Hilbertin avaruuksia, kompakteja operaattoreita Hilbertin avaruuksissa ja sitä, miten kompaktien operaattoreiden avulla on mahdollista muodostaa kanta Hilbertin avaruudelle. Kompakteilla operaattoreilla ... -
Numeerinen integrointi
Åström, Anne (2022)Tämän pro gradu -tutkielman tarkoituksena on syventää ja laajentaa lukion MAA12 kurssin numeerisen integroinnin teoriaa. Tutkielmassa käsitellään Newton-Cotesin integrointimenetelmä sekä Richarsonin ja Rombergin ...