Numeerinen integrointi
Tekijät
Päivämäärä
2022Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Tämän pro gradu -tutkielman tarkoituksena on syventää ja laajentaa lukion MAA12 kurssin numeerisen integroinnin teoriaa. Tutkielmassa käsitellään Newton-Cotesin integrointimenetelmä sekä Richarsonin ja Rombergin ekstrapolointimenetelmä. Menetelmiä käytetään yksi- ja kaksiulotteiseen integrointiin.
Numeerinen integroiminen on pinta-alan laskemista. Pinta-ala on funktion kuvaajan ja x-akselin väliin jäävä alue, joka rajoittuu integrointiväliin. Integroinnin määritelmäksi on valittu koulumatematiikassa yleisesti käytetty Bernhard Riemannin määritelmä, koska siitä on luontevaa johtaa numeerisen integroinnin menetelmät.
Lukion kurssilla esitellyt puolisuunnikassääntö ja Simpsonin 1/3-sääntö ovat Newton-Cotesin numeerisia integrointikaavoja. Näiden integrointikaavojen johtamisessa on käytetty Lagrangen interpolaatiopolynomeja. Lagrangen interpolaatiokaavalla voidaan määrittää polynomi, joka kulkee valittujen pisteiden kautta. Pisteet voivat olla erillisiä tai ne voidaan valita kuvaajalta. Puolisuunnikassäännössä näitä pisteitä on kaksi, ja Simpsonin 1/3-säännössä on kolme pistettä. Pisteitä lisäämällä saadaan johdettua lisää tarkempia integrointikaavoja, kunhan pisteistö on tasavälinen.
Kun pisteitä on yli seitsemän, tulee kaavoihin negatiivisia kertoimia ja ne eivät ole käyttökelpoisia. Yleisimmin integrointiväli jaetaankin osaväleihin, jotka integroidaan erikseen ja osavälien integraalit summataan yhteen. Näitä kaavoja kutsutaan yhdistetyiksi kaavoiksi. Tarkkuus paranee, kun osavälien määrä lisääntyy.
Kun integraalille ei voida laskea tarkkaa arvoa, on tärkeää tietää virheen suuruusluokka. Virheen arvioiminen on aina suurimman mahdollisen virheen eli maksimaalisen virheen laskemista. Jokaiselle Newton-Cotesin kaavalle voidaan laskea virhe, ja virheelle voidaan määritellä asteluku. Asteluku on Oh^n, jossa h on välin pituus. Mitä suurempi asteluku on, sitä enemmän välinpituuden muutoksella on vaikutusta virheen suuruusluokkaan. Jos asteluku on Oh^4, niin välin pituuden muutos vaikuttaa virheeseen h^4 kertaisesti. Kun osavälejä lisätään, tarkkuus paranee tämän asteluvun rajoissa. Osavälien lisääminen ei paranna integraalin tarkkuutta kovinkaan nopeasti.
Euler-MacLauren summakaavalla voidaan puolisuunnikassäännön virhe kirjoittaa
sarjana. Tästä sarjamuodosta saadaan johdettua rekursiokaava, jolla saadaan eliminoitua virhetermejä. Tätä h^2 virhetermin eliminointia kutsutaan Richardsonin ekstrapolaatioksi. Ekstrapolointimenetelmällä saadaan lisää tarkkuutta nopeammin, koska asteluku paranee kahdella jokaisella ekstrapolointi kerralla. Tässä menetelmässä ensin jaetaan integroitava väli osaväleihin m = 2,4,8,16, . . . ja lasketaan integraalit eri osaväleille puolisuunnikassäännöllä. Näistä arvoista rekursiokaavalla saadaan uudet tarkemmat arvot. Edelleen samalla tavalla voidaan ekstrapoloida näistä arvoista tarkempia arvoja rekursiokaavalla. Nämä saadut arvot kirjataan taulukkoon, josta
voidaan helposti nähdä arvojen tarkentuminen. Tätä rekursiomenetelmää kutsutaan
Rombergin menetelmäksi ja taulukkoa Rombergin tauluksi.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29559]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Torus Computed Tomography
Ilmavirta, Joonas; Koskela, Olli; Railo, Jesse (Society for Industrial and Applied Mathematics, 2020)We present a new computed tomography (CT) method for inverting the Radon transform in 2 dimensions. The idea relies on the geometry of the flat torus; hence we call the new method Torus CT. We prove new inversion formulas ... -
Bochner-integraali ja Radon-Nikodym -ominaisuus
Miettinen, Jani (2022)Tutkielma tarkastelee Banach-avaruuksien vektoriarvoista Bochner-integraalia. Integraali määritellään yksinkertaisille kuvauksille Lebesgue-integraalia ja avaruuden täydellisyyttä käyttäen. Tämän jälkeen tutustutaan ... -
Moniulotteinen Riemannin integraali
Kattelus, Elina (2023)Tässä tutkielmassa tutustutaan moniulotteiseen Riemannin integraaliin ja sen taustalla oleviin lauseisiin ja todistuksiin. Riemannin integraali saadaan Darboux’n summien raja-arvona integrointivälin jakoa tihennettäessä, ... -
Teaching Early Mathematical Skills to 3- to 7-Year-Old Children : Differences Related to Mathematical Skill Category, Children’s Age Group and Teachers’ Characteristics
Parviainen, Piia; Eklund, Kenneth; Koivula, Merja; Liinamaa, Tarja; Rutanen, Niina (Springer, 2023)This study explored teaching early mathematical skills to 3- to 7-year-old children in early childhood education and care (ECEC) and pre-primary education. Teachers in ECEC (N = 206) answered a web survey. The first aim ... -
"Ope, miks me lauletaan, vaikka meillä on matikan tunti?" : musiikin ja matematiikan oppisisältöjen integrointi
Marjanen, Joonas (2013)Perusopetuksen opetussuunnitelman perusteiden mukaan koulun tehtävä on tarjota mahdollisuus monipuoliseen kasvuun, oppimiseen, yleissivistyksen hankkimiseen ja terveen itsetunnon kehittymiseen. Koulumaailma rakentuu ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.