Näytä suppeat kuvailutiedot

dc.contributor.authorGorshkova, Elena
dc.date.accessioned2022-03-14T14:33:56Z
dc.date.available2022-03-14T14:33:56Z
dc.date.issued2007
dc.identifier.isbn978-951-39-9087-9
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80116
dc.description.abstractThis thesis is focused on the development and numerical justification of a modern computational methodology that provides guaranteed upper bounds of the energy norms of an error. The methodology suggested is based on the so-called functional type a posteriori error estimates. Different linearizations of the Navier-Stokes equations are considered. Namely, estimates of the Stokes problem, the evolutionary Stokes problem and the system with rotation are proposed. For the system with rotation and semi-discrete approximations of the evolutionary Stokes problem, such type of estimates are presented for the first time. For the Stokes problem and the system with rotation, different numerical strategies are implemented. Numerical tests are performed in Cartesian and Cylindrical coordinate system. For the Stokes problem, a posteriori error estimates on a certain subdomain of interest are also tested. It is shown that functional type a posteriori error estimation methods give reliable and robust upper bounds of the error and realistic error indication. The approach suggested allows to construct efficient mesh-adaptive algorithms and provide a guaranteed accuracy for the approximate solutions.en
dc.language.isoeng
dc.relation.ispartofseriesJyväskylä studies in computing
dc.relation.haspart<b>Artikkeli I:</b> Gorshkova, E. & Repin, S. (2004). On the functional type a posteriori error Estimates for the Stokes problem . <i>Proceeding of the ECCOMAS-2004, Jyväskylä, Finland, CD-ROM.</i> <a href=" https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.6458&rep=rep1&type=pdf"target="_blank">Full text</a>
dc.relation.haspart<b>Artikkeli II:</b> Gorshkova, E., Neittaanmäki, P., & Repin, S. (2006). Comparative study of the a posteriori error estimators for the Stokes problem. In <i>Numerical Mathematics and Advanced Applications (ENUMATH) (pp. 252-259). Springer.</i> DOI: <a href="https://doi.org/10.1007/978-3-540-34288-5_18"target="_blank"> 10.1007/978-3-540-34288-5_18</a>
dc.relation.haspart<b>Artikkeli III:</b> Gorshkova, E., Neittaanmäki, P., & Repin, S. (2007). Mesh-adaptive methods for viscous flow problem with rotation. In <i>Advances and Innovations in Systems, Computing and Software (pp. 105-107). Springer.</i> DOI: <a href="https://doi.org/10.1007/978-1-4020-6264-3_20"target="_blank"> 10.1007/978-1-4020-6264-3_20</a>
dc.relation.haspart<b>Artikkeli IV:</b> Gorshkova, E., Mahalov, A., Neittaanmäki, P., & Repin, S. (2007). A posteriori error estimates for viscous flow problems with rotation. <i>Journal of Mathematical Sciences, 142(1), 1749-1762.</i> DOI: <a href="https://doi.org/10.1007/s10958-007-0085-6"target="_blank"> 10.1007/s10958-007-0085-6</a>
dc.relation.haspart<b>Artikkeli V:</b> Gorshkova, E., Neittaanmaki, P., Repin, S. (2007). A posteriori error estimate for viscous flow problems with rotation. <i>Oberwolfach Report 29/2007 "Adaptive Numerical methods for PDE's", Mathematisches Forschungsinstitut Oberwolfach, pp. 18-20.</i> <a href="https://zdoc.pub/mathematisches-forschungsinstitut-oberwolfach-adaptive-numer.html"target="_blank">Full text</a>
dc.relation.haspart<b>Artikkeli VI:</b> Gorshkova, E. & Repin, S. (2008). A posteriori error estimates for semi-discrete approximations of the evolutionary Stokes problem. <i>Journal of mathematical Sciences.</i>
dc.rightsIn Copyright
dc.titleA posteriori error estimates and adaptive methods for incompressible viscous flow problems
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-9087-9
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.date.digitised2022


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright