A posteriori error estimates for variational problems in the theory of viscous fluids
The papers included in the thesis are focused on functional type a posteriori error
estimates for the Stokes problem, the Stokes problem with friction type boundary
conditions, the Oseen problem, and the anti-plane Bingham problem. In the
summary of the thesis we consider only the Oseen problem. The papers present
and justify special forms of these estimates which are suitable for the approximations
generated by the Uzawa algorithm. The estimates are of two main types.
Estimates of the first type use exact solutions obtained on the steps of the Uzawa
algorithm. They show how errors encompassed in Uzawa approximations behave
and have mainly theoretical meaning. Estimates of the second type operate
only with approximations (e.g. finite element solutions). Therefore, they are fully
computable. In the thesis it is shown that estimates of this type indeed provide
realistic evaluation of errors for finite element approximations of problems associated
with viscous incompressible fluids.
...
Julkaisija
University of JyväskyläISBN
978-951-39-6752-9ISSN Hae Julkaisufoorumista
1456-5390Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3599]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Functional a posteriori error estimates for boundary element methods
Kurz, Stefan; Pauly, Dirk; Praetorius, Dirk; Repin, Sergey; Sebastian, Daniel (Springer, 2021)Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate ... -
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey (Springer International Publishing, 2018)The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015) -
A posteriori error control for Maxwell and elliptic type problems
Anjam, Immanuel (University of Jyväskylä, 2014)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.