A Posteriori Modelling-Discretization Error Estimate for Elliptic Problems with L ∞-Coefficients
Weymuth, M., Sauter, S., & Repin, S. (2017). A Posteriori Modelling-Discretization Error Estimate for Elliptic Problems with L ∞-Coefficients. Computational Methods in Applied Mathematics, 17(3). https://doi.org/10.1515/cmam-2017-0015
Julkaistu sarjassa
Computational Methods in Applied MathematicsPäivämäärä
2017Tekijänoikeudet
© 2017 Walter de Gruyter GmbH, Berlin/Boston. This is a final draft version of an article whose final and definitive form has been published by de Gryuter. Published in this repository with the kind permission of the publisher.
We consider elliptic problems with complicated, discontinuous diffusion tensor A0.
One of the standard approaches to numerically treat such problems is to simplify the
coefficient by some approximation, say Aε, and to use standard finite elements. In [19]
a combined modelling-discretization strategy has been proposed which estimates the
discretization and modelling errors by a posteriori estimates of functional type. This
strategy allows to balance these two errors in a problem adapted way. However, the
estimate of the modelling error is derived under the assumption that the difference
A0 − Aε is bounded in the L∞-norm, which requires that the approximation of the
coefficient matches the discontinuities of the original coefficient. Therefore this theory is
not appropriate for applications with discontinuous coefficients along complicated, curved
interfaces. Based on bounds for A0 − Aε in an L
q
-norm with q < ∞ we generalize the
combined modelling-discretization strategy to a larger class of coefficients.
...
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
1609-4840Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27107135
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
A posteriori error control for Maxwell and elliptic type problems
Anjam, Immanuel (University of Jyväskylä, 2014) -
Functional a posteriori error equalities for conforming mixed approximations of elliptic problems
Anjam, Immanuel; Pauly, Dirk (University of Jyväskylä, 2014) -
Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients
Bojarski, Bogdan (University of Jyväskylä, 2009) -
Local regularity estimates for general discrete dynamic programming equations
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (Elsevier, 2022)We obtain an analytic proof for asymptotic Hölder estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.