Fully reliable a posteriori error control for evolutionary problems
Publisher
University of JyväskyläISBN
978-951-39-6291-3ISSN Search the Publication Forum
1456-5390Contains publications
- Article I: S. Matculevich, P. Neittaanmäki, and S. Repin. Guaranteed error bounds for a class of Picard-Lindelöf iteration methods. Numerical methods for differential equations, optimization, and technological problems, Comput. Methods Appl. Sci., 27: 175–189, 2013.
- Article II: S. Matculevich and S. Repin. Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation. Applied Mathematics and Computation, 247: 329–347, 2014. DOI: 10.1016/j.amc.2014.08.055
- Article III: S. Matculevich, P. Neittaanmäki, and S. Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne– Weinberger inequality. Discrete and Continuous Dynamical Systems - Series A, AIMS, 35(6): 2659–2677, 2015. Please see
- Article IV: S. Matculevich and S. Repin. Estimates of the distance to the exact solution of evolutionary reaction-diffusion problems based on local Poincaré type inequalities. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 425(1): 7–34, 2014. Please see.
- Article V: S. Matculevich and S. Repin. Sharp bounds of constants in Poincaré type inequalities for polygonal domains. Please see.
Keywords
Cauchy problem Picard-Lindelöf method Ostrowski estimates evolutionary problem of parabolic type reaction-diffusion equation functional type a posteriori error estimates error indicators Poincaré-type estimates differentiaaliyhtälöt osittaisdifferentiaaliyhtälöt epäyhtälöt numeerinen analyysi numeeriset menetelmät virheanalyysi virheet
Metadata
Show full item recordCollections
- Väitöskirjat [2667]