dc.contributor.author | Gorshkova, Elena | |
dc.date.accessioned | 2022-03-14T14:33:56Z | |
dc.date.available | 2022-03-14T14:33:56Z | |
dc.date.issued | 2007 | |
dc.identifier.isbn | 978-951-39-9087-9 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/80116 | |
dc.description.abstract | This thesis is focused on the development and numerical justification of a modern computational methodology that provides guaranteed upper bounds of the energy norms of an error. The methodology suggested is based on the so-called functional type a posteriori error estimates. Different linearizations of the Navier-Stokes equations are considered. Namely, estimates of the Stokes problem, the evolutionary Stokes problem and the system with rotation are proposed. For the system with rotation and semi-discrete approximations of the evolutionary Stokes problem, such type of estimates are presented for the first time. For the Stokes problem and the system with rotation, different numerical strategies are implemented. Numerical tests are performed in Cartesian and Cylindrical coordinate system. For the Stokes problem, a posteriori error estimates on a certain subdomain of interest are also tested. It is shown that functional type a posteriori error estimation methods give reliable and robust upper bounds of the error and realistic error indication. The approach suggested allows to construct efficient mesh-adaptive algorithms and provide a guaranteed accuracy for the approximate solutions. | en |
dc.language.iso | eng | |
dc.relation.ispartofseries | Jyväskylä studies in computing | |
dc.relation.haspart | <b>Artikkeli I:</b> Gorshkova, E. & Repin, S. (2004). On the functional type a posteriori error Estimates
for the Stokes problem . <i>Proceeding of the ECCOMAS-2004, Jyväskylä, Finland, CD-ROM.</i> <a href=" https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.6458&rep=rep1&type=pdf"target="_blank">Full text</a> | |
dc.relation.haspart | <b>Artikkeli II:</b> Gorshkova, E., Neittaanmäki, P., & Repin, S. (2006). Comparative study of the a posteriori error estimators for the Stokes problem. In <i>Numerical Mathematics and Advanced Applications (ENUMATH) (pp. 252-259). Springer.</i> DOI: <a href="https://doi.org/10.1007/978-3-540-34288-5_18"target="_blank"> 10.1007/978-3-540-34288-5_18</a> | |
dc.relation.haspart | <b>Artikkeli III:</b> Gorshkova, E., Neittaanmäki, P., & Repin, S. (2007). Mesh-adaptive methods for viscous flow problem with rotation. In <i>Advances and Innovations in Systems, Computing and Software (pp. 105-107). Springer.</i> DOI: <a href="https://doi.org/10.1007/978-1-4020-6264-3_20"target="_blank"> 10.1007/978-1-4020-6264-3_20</a> | |
dc.relation.haspart | <b>Artikkeli IV:</b> Gorshkova, E., Mahalov, A., Neittaanmäki, P., & Repin, S. (2007). A posteriori error estimates for viscous flow problems with rotation. <i>Journal of Mathematical Sciences, 142(1), 1749-1762.</i> DOI: <a href="https://doi.org/10.1007/s10958-007-0085-6"target="_blank"> 10.1007/s10958-007-0085-6</a> | |
dc.relation.haspart | <b>Artikkeli V:</b> Gorshkova, E., Neittaanmaki, P., Repin, S. (2007). A posteriori error estimate
for viscous flow problems with rotation. <i>Oberwolfach Report 29/2007
"Adaptive Numerical methods for PDE's", Mathematisches Forschungsinstitut
Oberwolfach, pp. 18-20.</i> <a href="https://zdoc.pub/mathematisches-forschungsinstitut-oberwolfach-adaptive-numer.html"target="_blank">Full text</a> | |
dc.relation.haspart | <b>Artikkeli VI:</b> Gorshkova, E. & Repin, S. (2008). A posteriori error estimates for semi-discrete
approximations of the evolutionary Stokes problem. <i>Journal of mathematical Sciences.</i> | |
dc.rights | In Copyright | |
dc.title | A posteriori error estimates and adaptive methods for incompressible viscous flow problems | |
dc.type | Diss. | |
dc.identifier.urn | URN:ISBN:978-951-39-9087-9 | |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.rights.accesslevel | openAccess | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |
dc.date.digitised | 2022 | |