dc.contributor.author | Hämäläinen, Joonas | |
dc.contributor.author | Nieminen, Paavo | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2022-01-13T08:01:38Z | |
dc.date.available | 2022-01-13T08:01:38Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2021). Instance-Based Multi-Label Classification via Multi-Target Distance Regression. In <i>ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08</i> (pp. 653-658). ESANN. <a href="https://doi.org/10.14428/esann/2021.ES2021-104" target="_blank">https://doi.org/10.14428/esann/2021.ES2021-104</a> | |
dc.identifier.other | CONVID_103547139 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79349 | |
dc.description.abstract | Interest in multi-target regression and multi-label classification techniques and their applications have been increasing lately. Here, we use the distance-based supervised method, minimal learning machine (MLM), as a base model for multi-label classification. We also propose and test a hybridization of unsupervised and supervised techniques, where prototype-based clustering is used to reduce both the training time and the overall model complexity. In computational experiments, competitive or improved quality of the obtained models compared to the state-of-the-art techniques was observed. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08 | |
dc.rights | In Copyright | |
dc.subject.other | multi-target regression | |
dc.subject.other | multi-label classification techniques | |
dc.subject.other | minimal learning machine | |
dc.title | Instance-Based Multi-Label Classification via Multi-Target Distance Regression | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202201131124 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-2-87587-082-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 653-658 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Authors, 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 311877 | |
dc.relation.grantnumber | 315550 | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | tekoäly | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.14428/esann/2021.ES2021-104 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundinginformation | The work has been supported by the Academy of Finland from the projects 311877 and 315550. | |
dc.type.okm | A4 | |