Instance-Based Multi-Label Classification via Multi-Target Distance Regression
Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2021). Instance-Based Multi-Label Classification via Multi-Target Distance Regression. In ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08 (pp. 653-658). ESANN. https://doi.org/10.14428/esann/2021.ES2021-104
Päivämäärä
2021Tekijänoikeudet
© Authors, 2021
Interest in multi-target regression and multi-label classification techniques and their applications have been increasing lately. Here, we use the distance-based supervised method, minimal learning machine (MLM), as a base model for multi-label classification. We also propose and test a hybridization of unsupervised and supervised techniques, where prototype-based clustering is used to reduce both the training time and the overall model complexity. In computational experiments, competitive or improved quality of the obtained models compared to the state-of-the-art techniques was observed.
Julkaisija
ESANNEmojulkaisun ISBN
978-2-87587-082-7Konferenssi
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningKuuluu julkaisuun
ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103547139
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
The work has been supported by the Academy of Finland from the projects 311877 and 315550.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ... -
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Investigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques
Niazi, Tahira; Das, Teerath; Ahmed, Ghufran; Waqas, Syed Muhammad; Khan, Sumra; Khan, Suleman; Abdelatif, Ahmed Abdelaziz; Wasi, Shaukat (MDPI AG, 2023)Code comments are considered an efficient way to document the functionality of a particular block of code. Code commenting is a common practice among developers to explain the purpose of the code in order to improve code ... -
Minimal learning machine in hyperspectral imaging classification
Hakola, Anna-Maria; Pölönen, Ilkka (SPIE, 2020)A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum ... -
Unstable feature relevance in classification tasks
Skrypnyk, Iryna (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.