Instance-Based Multi-Label Classification via Multi-Target Distance Regression
Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2021). Instance-Based Multi-Label Classification via Multi-Target Distance Regression. In ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08 (pp. 653-658). ESANN. https://doi.org/10.14428/esann/2021.ES2021-104
Date
2021Copyright
© Authors, 2021
Interest in multi-target regression and multi-label classification techniques and their applications have been increasing lately. Here, we use the distance-based supervised method, minimal learning machine (MLM), as a base model for multi-label classification. We also propose and test a hybridization of unsupervised and supervised techniques, where prototype-based clustering is used to reduce both the training time and the overall model complexity. In computational experiments, competitive or improved quality of the obtained models compared to the state-of-the-art techniques was observed.
Publisher
ESANNParent publication ISBN
978-2-87587-082-7Conference
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningIs part of publication
ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/103547139
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research profiles, AoF; Academy Programme, AoFAdditional information about funding
The work has been supported by the Academy of Finland from the projects 311877 and 315550.License
Related items
Showing items with similar title or keywords.
-
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ... -
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Minimal learning machine in hyperspectral imaging classification
Hakola, Anna-Maria; Pölönen, Ilkka (SPIE, 2020)A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum ... -
Comparison of feature importance measures as explanations for classification models
Saarela, Mirka; Jauhiainen, Susanne (Springer, 2021)Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature ... -
Unstable feature relevance in classification tasks
Skrypnyk, Iryna (University of Jyväskylä, 2011)