Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, J., & Kärkkäinen, T. (2020). Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression. In ESANN 2020 : Proceedings of the 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 691-696). ESANN. https://www.esann.org/sites/default/files/proceedings/2020/ES2020-181.pdf
Päivämäärä
2020Tekijänoikeudet
© The Authors, 2019
Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods, the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM), in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential, emphasizing the utility of the problem transformation especially with the EMLM.
Julkaisija
ESANNEmojulkaisun ISBN
978-2-87587-074-2Konferenssi
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningKuuluu julkaisuun
ESANN 2020 : Proceedings of the 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningAsiasanat
Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM) in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential emphasizing the utility of the problem transformation especially with the EMLM. koneoppiminen
Alkuperäislähde
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-181.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/43492634
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SA; Akatemiaohjelma, SALisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Extreme minimal learning machine : Ridge regression with distance-based basis
Kärkkäinen, Tommi (Elsevier BV, 2019)The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights ... -
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Instance-Based Multi-Label Classification via Multi-Target Distance Regression
Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (ESANN, 2021)Interest in multi-target regression and multi-label classification techniques and their applications have been increasing lately. Here, we use the distance-based supervised method, minimal learning machine (MLM), as a base ... -
Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine Learning Methods
Pihlajamäki, Antti; Hämäläinen, Joonas; Linja, Joakim; Nieminen, Paavo; Malola, Sami; Kärkkäinen, Tommi; Häkkinen, Hannu (American Chemical Society, 2020)We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiolate (SR) protected gold ... -
Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection
Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (Infonomics Society, 2017)The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.