Extreme minimal learning machine : Ridge regression with distance-based basis
Kärkkäinen, T. (2019). Extreme minimal learning machine : Ridge regression with distance-based basis. Neurocomputing, 342, 33-48. https://doi.org/10.1016/j.neucom.2018.12.078
Julkaistu sarjassa
NeurocomputingTekijät
Päivämäärä
2019Tekijänoikeudet
© 2019 Published by Elsevier B.V.
The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an additional multilateration problem for the estimation of the distance-regression based output. A natural combination of these two techniques is proposed and experimented here: to use the distance-based basis characteristic in the MLM in the learning framework of the regularized ELM. In other words, we conduct ridge regression using a distance-based basis. The experimental results characterize the basic features of the proposed technique and surprisingly, indicate that overlearning with the distance-based basis is in practice avoided in classification problems. This makes the model selection for the proposed method trivial, at the expense of computational costs.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0925-2312Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28917157
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
This work was supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI). The constructive feedback from the reviewers, improving the contents and the presentation, is sincerely acknowledged. The author is also grateful to MSc Joonas Hämäläinen for his help in carrying out the experiments reported here.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ... -
On the Role of Taylor’s Formula in Machine Learning
Kärkkäinen, Tommi (Springer, 2023)The classical Taylor’s formula is an elementary tool in mathematical analysis and function approximation. Its role in the optimization theory, whose data-driven variants have a central role in machine learning training ... -
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
Aaltonen, Olli-Pekka (2016)Rikosseuraamusalalla on viime vuosina kehitetty uusintarikollisuutta ennustavia malleja (Tyni, 2015), jotka perustuvat tyypillisesti rekisteripohjaisiin mittareihin, jotka mittaavat mm. tuomitun sukupuolta, ikää, rikostaustaa ... -
Feature selection for distance-based regression : An umbrella review and a one-shot wrapper
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (Elsevier, 2023)Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised machine learning models. In this paper, FS for the recently introduced distance-based supervised machine learning ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.