Instance-Based Multi-Label Classification via Multi-Target Distance Regression
Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2021). Instance-Based Multi-Label Classification via Multi-Target Distance Regression. In ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08 (pp. 653-658). ESANN. https://doi.org/10.14428/esann/2021.ES2021-104
Päivämäärä
2021Tekijänoikeudet
© Authors, 2021
Interest in multi-target regression and multi-label classification techniques and their applications have been increasing lately. Here, we use the distance-based supervised method, minimal learning machine (MLM), as a base model for multi-label classification. We also propose and test a hybridization of unsupervised and supervised techniques, where prototype-based clustering is used to reduce both the training time and the overall model complexity. In computational experiments, competitive or improved quality of the obtained models compared to the state-of-the-art techniques was observed.
Julkaisija
ESANNEmojulkaisun ISBN
978-2-87587-082-7Konferenssi
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningKuuluu julkaisuun
ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103547139
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
The work has been supported by the Academy of Finland from the projects 311877 and 315550.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ... -
Updating strategies for distance based classification model with recursive least squares
Raita-Hakola, Anna-Maria; Pölönen, Ilkka (Copernicus Publications, 2022)The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the ... -
Comparison of feature importance measures as explanations for classification models
Saarela, Mirka; Jauhiainen, Susanne (Springer, 2021)Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature ... -
Unstable feature relevance in classification tasks
Skrypnyk, Iryna (University of Jyväskylä, 2011) -
Extreme minimal learning machine : Ridge regression with distance-based basis
Kärkkäinen, Tommi (Elsevier BV, 2019)The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.