Show simple item record

dc.contributor.authorAfsar, Bekir
dc.contributor.authorRuiz, Ana B.
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2021-12-27T12:28:05Z
dc.date.available2021-12-27T12:28:05Z
dc.date.issued2023
dc.identifier.citationAfsar, B., Ruiz, A. B., & Miettinen, K. (2023). Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker. <i>Complex & Intelligent systems</i>, <i>9</i>(2), 1165-1181. <a href="https://doi.org/10.1007/s40747-021-00586-5" target="_blank">https://doi.org/10.1007/s40747-021-00586-5</a>
dc.identifier.otherCONVID_102421429
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79196
dc.description.abstractSolving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the problem. There are different interactive methods, and it is important to compare them and find the best-suited one for solving the problem in question. Comparisons with real decision makers are expensive, and artificial decision makers (ADMs) have been proposed to simulate humans in basic testing before involving real decision makers. Existing ADMs only consider one type of preference information. In this paper, we propose ADM-II, which is tailored to assess several interactive evolutionary methods and is able to handle different types of preference information. We consider two phases of interactive solution processes, i.e., learning and decision phases separately, so that the proposed ADM-II generates preference information in different ways in each of them to reflect the nature of the phases. We demonstrate how ADM-II can be applied with different methods and problems. We also propose an indicator to assess and compare the performance of interactive evolutionary methods.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science+Business Media
dc.relation.ispartofseriesComplex & Intelligent systems
dc.rightsCC BY 4.0
dc.subject.otherPerformance comparison
dc.subject.otherMany-objective optimization
dc.subject.otherInteractive methods
dc.titleComparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202112276177
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1165-1181
dc.relation.issn2199-4536
dc.relation.numberinseries2
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber322221
dc.relation.grantnumber311877
dc.subject.ysoevoluutiolaskenta
dc.subject.ysointeraktiivisuus
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopäätöksentukijärjestelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
jyx.subject.urihttp://www.yso.fi/onto/yso/p10823
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s40747-021-00586-5
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe authors would like to thank the financial support received from the Spanish government (Grant ECO2017-88883-R), the regional government of Andalusia (Grant UMA18-FEDERJA-024 and PAI group SEJ-532), and the Academy of Finland (Grants 322221 and 311877).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0