Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, G., Mönkkönen, K., & Railo, J. (2021). Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 15(4), 641-681. https://doi.org/10.3934/ipi.2021009
Julkaistu sarjassa
Inverse Problems and ImagingPäivämäärä
2021Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© American Institute of Mathematical Sciences (AIMS), 2021
We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schrödinger equation. We also study the higher order fractional Schrödinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the d-plane Radon transform in low regularity. Our work extends some recent results in inverse problems for more general operators.
Julkaisija
American Institute of Mathematical Sciences (AIMS)ISSN Hae Julkaisufoorumista
1930-8337Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/97817913
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
G.C. was partially supported by the European Research Council under Horizon 2020 (ERC CoG 770924). K.M. and J.R. were partially supported by Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
The Calderón problem for the fractional Schrödinger equation with drift
Cekić, Mihajlo; Lin, Yi-Hsuan; Rüland, Angkana (Springer, 2020)We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2022)We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and ... -
The fractional Calderón problem : Low regularity and stability
Rüland, Angkana; Salo, Mikko (Elsevier, 2020)The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear)which gave a global uniqueness result also in the partial data case. This article improves this result in two ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.