The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, P.-Z., Lin, Y.-H., & Wang, J.-N. (2022). The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability. SIAM Journal on Mathematical Analysis, 54(3), 3379-3419. https://doi.org/10.1137/21M1444941
Julkaistu sarjassa
SIAM Journal on Mathematical AnalysisPäivämäärä
2022Tekijänoikeudet
© Authors, 2022
We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and stability estimate in the determination of the potential by the exterior Dirichlet-to-Neumann map. The main tools are the qualitative and quantitative unique continuation properties for the fractional Laplacian. For the stability, we also prove that the log type stability estimate is optimal. The log type estimate shows the striking difference between the inverse problems for the fractional and classical wave equations in the stability issue. The results hold for any spatial dimension n∈N
Julkaisija
Society for Industrial & Applied Mathematics (SIAM)ISSN Hae Julkaisufoorumista
0036-1410Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/150970521
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The second author is partially supported by the Ministry of Science and Technology Taiwan, under the Columbus Program: MOST-109-2636-M-009-006, 2020-2025. The third author is partly supported by MOST 108-2115-M-002-002-MY3 and 109-2115-M-002-001-MY3.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
The fractional Calderón problem : Low regularity and stability
Rüland, Angkana; Salo, Mikko (Elsevier, 2020)The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear)which gave a global uniqueness result also in the partial data case. This article improves this result in two ... -
Quantitative approximation properties for the fractional heat equation
Rüland, Angkana; Salo, Mikko (American Institute of Mathematical Sciences, 2020)In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
The higher order fractional Calderón problem for linear local operators : Uniqueness
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse; Uhlmann, Gunther (Elsevier, 2022)We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.