The Calderón problem for the fractional Schrödinger equation
Ghosh, T., Salo, M., & Uhlmann, G. (2020). The Calderón problem for the fractional Schrödinger equation. Analysis and PDE, 13(2), 455-475. https://doi.org/10.2140/apde.2020.13.455
Julkaistu sarjassa
Analysis and PDEPäivämäärä
2020Oppiaine
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsTekijänoikeudet
© 2020 Mathematical Sciences Publishers
We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension ≥1 and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calderón problem.
Julkaisija
Mathematical Sciences PublishersISSN Hae Julkaisufoorumista
2157-5045Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35078766
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SA; EU:n 7. puiteohjelma (FP7)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
Salo was partly supported by the Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963) and by the European Research Council under FP7/2007-2013 (ERC StG 307023) and Horizon 2020 (ERC CoG 770924). Uhlmann was partly supported by the NSF, a Si-Yuan Professorship at IAS, HKUST, and a FiDiPro at the University of Helsinki.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quantitative approximation properties for the fractional heat equation
Rüland, Angkana; Salo, Mikko (American Institute of Mathematical Sciences, 2020)In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2022)We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.