dc.contributor.author | Lehrbäck, Juha | |
dc.contributor.editor | Freiberg, Uta | |
dc.contributor.editor | Hambly, Ben | |
dc.contributor.editor | Hinz, Michael | |
dc.contributor.editor | Winter, Steffen | |
dc.date.accessioned | 2021-04-15T11:07:20Z | |
dc.date.available | 2021-04-15T11:07:20Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Lehrbäck, J. (2021). Assouad Type Dimensions in Geometric Analysis. In U. Freiberg, B. Hambly, M. Hinz, & S. Winter (Eds.), <i>Fractal Geometry and Stochastics VI</i> (pp. 25-46). Birkhäuser. Progress in Probability, 76. <a href="https://doi.org/10.1007/978-3-030-59649-1_2" target="_blank">https://doi.org/10.1007/978-3-030-59649-1_2</a> | |
dc.identifier.other | CONVID_52590230 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/75072 | |
dc.description.abstract | We consider applications of the dual pair of the (upper) Assouad dimension and the lower (Assouad) dimension in analysis. We relate these notions to other dimensional conditions such as a Hausdorff content density condition and an integrability condition for the distance function. The latter condition leads to a characterization of the Muckenhoupt Ap properties of distance functions in terms of the (upper) Assouad dimension. It is also possible to give natural formulations for the validity of Hardy–Sobolev inequalities using these dual Assouad dimensions, and this helps to understand the previously observed dual nature of certain cases of these inequalities. | en |
dc.format.extent | 307 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Birkhäuser | |
dc.relation.ispartof | Fractal Geometry and Stochastics VI | |
dc.relation.ispartofseries | Progress in Probability | |
dc.rights | In Copyright | |
dc.subject.other | Assouad dimension | |
dc.subject.other | Lower dimension | |
dc.subject.other | Aikawa condition | |
dc.subject.other | Muckenhoupt weight | |
dc.subject.other | Hardy–Sobolev inequality | |
dc.title | Assouad Type Dimensions in Geometric Analysis | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202104152382 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-3-030-59648-4 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 25-46 | |
dc.relation.issn | 1050-6977 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer Nature Switzerland AG 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Fractal Geometry and Stochastics | |
dc.subject.yso | mittateoria | |
dc.subject.yso | epäyhtälöt | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15720 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/978-3-030-59649-1_2 | |
dc.type.okm | A4 | |