Loomis-Whitney inequalities in Heisenberg groups
Fässler, K., & Pinamonti, A. (2022). Loomis-Whitney inequalities in Heisenberg groups. Mathematische Zeitschrift, 301(2), 1983-2010. https://doi.org/10.1007/s00209-022-02968-y
Julkaistu sarjassa
Mathematische ZeitschriftPäivämäärä
2022Tekijänoikeudet
© The Author(s) 2022
This note concerns Loomis–Whitney inequalities in Heisenberg groups Hn:
|K|≲∏j=12n|πj(K)|n+1n(2n+1), K⊂Hn.
Here πj, j=1,…,2n, are the vertical Heisenberg projections to the hyperplanes {xj=0}, respectively, and |⋅| refers to a natural Haar measure on either Hn, or one of the hyperplanes. The Loomis–Whitney inequality in the first Heisenberg group H1 is a direct consequence of known Lp improving properties of the standard Radon transform in R2. In this note, we show how the Loomis–Whitney inequalities in higher dimensional Heisenberg groups can be deduced by an elementary inductive argument from the inequality in H1. The same approach, combined with multilinear interpolation, also yields the following strong type bound:
∫Hn∏j=12nfj(πj(p))dp≲∏j=12n‖fj‖n(2n+1)n+1
for all nonnegative measurable functions f1,…,f2n on R2n. These inequalities and their geometric corollaries are thus ultimately based on planar geometry. Among the applications of Loomis–Whitney inequalities in Hn, we mention the following sharper version of the classical geometric Sobolev inequality in Hn:
‖u‖2n+22n+1≲∏j=12n‖Xju‖12n,u∈BV(Hn),
where Xj, j=1,…,2n, are the standard horizontal vector fields in Hn. Finally, we also establish an extension of the Loomis–Whitney inequality in Hn, where the Heisenberg vertical coordinate projections π1,…,π2n are replaced by more general families of mappings that allow us to apply the same inductive approach based on the L3/2-L3 boundedness of an operator in the plane.
...
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
0025-5874Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104220297
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Akatemiatutkija, SALisätietoja rahoituksesta
K. Fässler is supported by the Academy of Finland via the project Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, grant Nos. 321696, 328846. A. Pinamonti is partially supported by supported by the University of Trento and GNAMPA of INDAM.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
Di Donato, Daniela; Fässler, Katrin (Springer, 2022)This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group Hn, n∈N. For 1⩽k⩽n, we show that every intrinsic L-Lipschitz graph over a subset ... -
Necessary condition for the L2 boundedness of the Riesz transform on Heisenberg groups
Dąbrowski, Damian; Villa, Michele (Cambridge University Press (CUP), 2023)Let μ be a Radon measure on the nth Heisenberg group Hn. In this note we prove that if the (2n+1) -dimensional (Heisenberg) Riesz transform on Hn is L2(μ) -bounded, and if μ(F)=0 for all Borel sets with dimH(F)≤2 , then μ ... -
Magnetic fractional Poincaré inequality in punctured domains
Bal, Kaushik; Mohanta, Kaushik; Roy, Prosenjit (Elsevier, 2024)We study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and ... -
Pointwise inequalities for Sobolev functions on generalized cuspidal domains
Zhu, Zheng (Finnish Mathematical Society, 2022)Olkoon Ω⊂Rn−1 rajoitettu tähtimäinen alue ja Ωψ ulkoneva kärkialue, jonka kanta-alue on Ω. Arvoilla 1< p≤ ∞ osoitamme, että W1,p(Ωψ) = M1,p(Ωψ) jos ja vain jos W1,p(Ω) = M1,p(Ω). -
Assouad Type Dimensions in Geometric Analysis
Lehrbäck, Juha (Birkhäuser, 2021)We consider applications of the dual pair of the (upper) Assouad dimension and the lower (Assouad) dimension in analysis. We relate these notions to other dimensional conditions such as a Hausdorff content density condition ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.