The Egan problem on the pull-in range of type 2 PLLs
Kuznetsov, N. V., Lobachev, M. Y., Yuldashev, M. V., & Yuldashev, R. V. (2021). The Egan problem on the pull-in range of type 2 PLLs. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), 1467-1471. https://doi.org/10.1109/tcsii.2020.3038075
Julkaistu sarjassa
IEEE Transactions on Circuits and Systems II: Express BriefsPäivämäärä
2021Tekijänoikeudet
© 2020 the Authors
In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. Although it is known that for the second-order type 2 PLLs the hold-in range and the pull-in range are both infinite, the present paper shows that the Egan conjecture may be not valid in general. We provide an implementation of the third-order type 2 PLL, which has an infinite hold-in range and experiences stable oscillations. This implementation and the Egan conjecture naturally pose a problem, which we will call the Egan problem: to determine a class of type 2 PLLs for which an infinite hold-in range implies an infinite pull-in range. Using the direct Lyapunov method for the cylindrical phase space we suggest a sufficient condition of the pull-in range infiniteness, which provides a solution to the Egan problem.
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
1549-7747Asiasanat
phase-locked loop PLL type II type 2 hold-in range Egan conjecture Egan problem on the pull-in range Gardner problem on the lock-in range Lyapunov functions nonlinear analysis global stability describing function harmonic balance method säätöteoria differentiaaliyhtälöt värähtelyt elektroniset piirit
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47039198
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The work is supported by the Russian Science Foundation (project 19-41-02002).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V.; Kolumbán, G. (Elsevier, 2020)The most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering ... -
Nonlinear Analysis of Charge-Pump Phase-Locked Loop : The Hold-In and Pull-In Ranges
Kuznetsov, Nikolay; Matveev, Alexey; Yuldashev, Marat; Yuldashev, Renat (Institute of Electrical and Electronics Engineers (IEEE), 2021)In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions ... -
Stability of charge-pump phase-locked loops : the hold-in and pull-in ranges
Kuznetsov, N.V.; Matveev, A.S.; Yuldashev, M.V.; Yuldashev, R.V.; Bianchi, G. (Elsevier, 2020)The problem of design and analysis of synchronization control circuits is a challenging task for many applications: satellite navigation, digital communication, wireless networks, and others. In this article the Charge-Pump ... -
Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the Phase Detector
Blagov, M. V.; Kuznetsova, O. A.; Kudryashov, E. V.; Kuznetsov, Nikolay; Mokaev, T. N.; Mokaev, R. N.; Yuldashev, M. V.; Yuldashev, R. V. (Elsevier, 2019)In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures is considered. A new modification of the PLL with tangential phase detector characteristic ... -
О проблеме Гарднера для систем управления фазовой автоподстройкой частоты
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V. (Russian Academy of Sciences, 2019)This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.