О проблеме Гарднера для систем управления фазовой автоподстройкой частоты
Kuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V., & Yuldashev, R.V. (2019). О проблеме Гарднера для систем управления фазовой автоподстройкой частоты. Doklady Akademii Nauk, 489(6), 541-544. https://doi.org/10.31857/S0869-56524896541-544
Julkaistu sarjassa
Doklady Akademii NaukPäivämäärä
2019Tekijänoikeudet
© 2019 Russian Academy of Sciences
This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system.
Julkaisija
Russian Academy of SciencesISSN Hae Julkaisufoorumista
0869-5652Asiasanat
Huom.
Published also in English: Kuznetsov, N.V., Lobachev, M.Y., Yuldashev, M.V. et al. On the Gardner Problem for Phase-Locked Loops. Dokl. Math. 100, 568–570 (2019). https://doi.org/10.1134/S1064562419060218
Katso myös
https://doi.org/10.1134/S1064562419060218Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34174886
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Work done at financial support of the Russian Science Foundation (project 19-41-02002).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Egan problem on the pull-in range of type 2 PLLs
Kuznetsov, Nikolay V.; Lobachev, Mikhail Y.; Yuldashev, Marat V.; Yuldashev, Renat V. (Institute of Electrical and Electronics Engineers (IEEE), 2021)In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. ... -
Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V.; Kolumbán, G. (Elsevier, 2020)The most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering ... -
Stability of charge-pump phase-locked loops : the hold-in and pull-in ranges
Kuznetsov, N.V.; Matveev, A.S.; Yuldashev, M.V.; Yuldashev, R.V.; Bianchi, G. (Elsevier, 2020)The problem of design and analysis of synchronization control circuits is a challenging task for many applications: satellite navigation, digital communication, wireless networks, and others. In this article the Charge-Pump ... -
Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the Phase Detector
Blagov, M. V.; Kuznetsova, O. A.; Kudryashov, E. V.; Kuznetsov, Nikolay; Mokaev, T. N.; Mokaev, R. N.; Yuldashev, M. V.; Yuldashev, R. V. (Elsevier, 2019)In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures is considered. A new modification of the PLL with tangential phase detector characteristic ... -
Non-linear analysis of a modified QPSK Costas loop
Kuznetsov, N. V.; Blagov, M. V.; Kudryashova, E. V.; Ladvanszky, J.; Yuldashev, M. V.; Yuldashev, R. V. (IFAC; Elsevier, 2019)A Costas loop is one of the classical phase-locked loop based circuits, which demodulates data and recovers carrier from the input signal. The Costas loop is essentially a nonlinear control system and its nonlinear analysis ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.