dc.contributor.author | Kuznetsov, Nikolay V. | |
dc.contributor.author | Lobachev, Mikhail Y. | |
dc.contributor.author | Yuldashev, Marat V. | |
dc.contributor.author | Yuldashev, Renat V. | |
dc.date.accessioned | 2020-11-24T11:22:43Z | |
dc.date.available | 2020-11-24T11:22:43Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Kuznetsov, N. V., Lobachev, M. Y., Yuldashev, M. V., & Yuldashev, R. V. (2021). The Egan problem on the pull-in range of type 2 PLLs. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i>, <i>68</i>(4), 1467-1471. <a href="https://doi.org/10.1109/tcsii.2020.3038075" target="_blank">https://doi.org/10.1109/tcsii.2020.3038075</a> | |
dc.identifier.other | CONVID_47039198 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72785 | |
dc.description.abstract | In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. Although it is known that for the second-order type 2 PLLs the hold-in range and the pull-in range are both infinite, the present paper shows that the Egan conjecture may be not valid in general. We provide an implementation of the third-order type 2 PLL, which has an infinite hold-in range and experiences stable oscillations. This implementation and the Egan conjecture naturally pose a problem, which we will call the Egan problem: to determine a class of type 2 PLLs for which an infinite hold-in range implies an infinite pull-in range. Using the direct Lyapunov method for the cylindrical phase space we suggest a sufficient condition of the pull-in range infiniteness, which provides a solution to the Egan problem. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.ispartofseries | IEEE Transactions on Circuits and Systems II: Express Briefs | |
dc.rights | CC BY 4.0 | |
dc.subject.other | phase-locked loop | |
dc.subject.other | PLL | |
dc.subject.other | type II | |
dc.subject.other | type 2 | |
dc.subject.other | hold-in range | |
dc.subject.other | Egan conjecture | |
dc.subject.other | Egan problem on the pull-in range | |
dc.subject.other | Gardner problem on the lock-in range | |
dc.subject.other | Lyapunov functions | |
dc.subject.other | nonlinear analysis | |
dc.subject.other | global stability | |
dc.subject.other | describing function | |
dc.subject.other | harmonic balance method | |
dc.title | The Egan problem on the pull-in range of type 2 PLLs | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202011246748 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1467-1471 | |
dc.relation.issn | 1549-7747 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 68 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | säätöteoria | |
dc.subject.yso | differentiaaliyhtälöt | |
dc.subject.yso | värähtelyt | |
dc.subject.yso | elektroniset piirit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p868 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3552 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p708 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p953 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1109/tcsii.2020.3038075 | |
jyx.fundinginformation | The work is supported by the Russian Science Foundation (project 19-41-02002). | |
dc.type.okm | A1 | |