Näytä suppeat kuvailutiedot

dc.contributor.authorKuznetsov, Nikolay V.
dc.contributor.authorLobachev, Mikhail Y.
dc.contributor.authorYuldashev, Marat V.
dc.contributor.authorYuldashev, Renat V.
dc.date.accessioned2020-11-24T11:22:43Z
dc.date.available2020-11-24T11:22:43Z
dc.date.issued2021
dc.identifier.citationKuznetsov, N. V., Lobachev, M. Y., Yuldashev, M. V., & Yuldashev, R. V. (2021). The Egan problem on the pull-in range of type 2 PLLs. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i>, <i>68</i>(4), 1467-1471. <a href="https://doi.org/10.1109/tcsii.2020.3038075" target="_blank">https://doi.org/10.1109/tcsii.2020.3038075</a>
dc.identifier.otherCONVID_47039198
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72785
dc.description.abstractIn 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. Although it is known that for the second-order type 2 PLLs the hold-in range and the pull-in range are both infinite, the present paper shows that the Egan conjecture may be not valid in general. We provide an implementation of the third-order type 2 PLL, which has an infinite hold-in range and experiences stable oscillations. This implementation and the Egan conjecture naturally pose a problem, which we will call the Egan problem: to determine a class of type 2 PLLs for which an infinite hold-in range implies an infinite pull-in range. Using the direct Lyapunov method for the cylindrical phase space we suggest a sufficient condition of the pull-in range infiniteness, which provides a solution to the Egan problem.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Circuits and Systems II: Express Briefs
dc.rightsCC BY 4.0
dc.subject.otherphase-locked loop
dc.subject.otherPLL
dc.subject.othertype II
dc.subject.othertype 2
dc.subject.otherhold-in range
dc.subject.otherEgan conjecture
dc.subject.otherEgan problem on the pull-in range
dc.subject.otherGardner problem on the lock-in range
dc.subject.otherLyapunov functions
dc.subject.othernonlinear analysis
dc.subject.otherglobal stability
dc.subject.otherdescribing function
dc.subject.otherharmonic balance method
dc.titleThe Egan problem on the pull-in range of type 2 PLLs
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202011246748
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1467-1471
dc.relation.issn1549-7747
dc.relation.numberinseries4
dc.relation.volume68
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysosäätöteoria
dc.subject.ysodifferentiaaliyhtälöt
dc.subject.ysovärähtelyt
dc.subject.ysoelektroniset piirit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p868
jyx.subject.urihttp://www.yso.fi/onto/yso/p3552
jyx.subject.urihttp://www.yso.fi/onto/yso/p708
jyx.subject.urihttp://www.yso.fi/onto/yso/p953
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/tcsii.2020.3038075
jyx.fundinginformationThe work is supported by the Russian Science Foundation (project 19-41-02002).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0