Automatic image‐based identification and biomass estimation of invertebrates
Ärje, J., Melvad, C., Jeppesen, M. R., Madsen, S. A., Raitoharju, J., Rasmussen, M. S., Iosifidis, A., Tirronen, V., Gabbouj, M., Meissner, K., & Høye, T. T. (2020). Automatic image‐based identification and biomass estimation of invertebrates. Methods in Ecology and Evolution, 11(8), 922-931. https://doi.org/10.1111/2041-210X.13428
Published in
Methods in Ecology and EvolutionAuthors
Date
2020Copyright
© 2020 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society
Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identification machine, which can automate the process of invertebrate sample sorting, specimen identification and biomass estimation. We use the imaging device to generate a comprehensive image database of terrestrial arthropod species which is then used to test classification accuracy, that is, how well the species identity of a specimen can be predicted from images taken by the machine. We also test sensitivity of the classification accuracy to the camera settings (aperture and exposure time) to move forward with the best possible image quality. We use state-of-the-art Resnet-50 and InceptionV3 convolutional neural networks for the classification task. The results for the initial dataset are very promising as we achieved an average classification accuracy of 0.980. While classification accuracy is high for most species, it is lower for species represented by less than 50 specimens. We found significant positive relationships between mean area of specimens derived from images and their dry weight for three species of Diptera. The system is general and can easily be used for other groups of invertebrates as well. As such, our results pave the way for generating more data on spatial and temporal variation in invertebrate abundance, diversity and biomass.
...
Publisher
WileyISSN Search the Publication Forum
2041-210XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/41645207
Metadata
Show full item recordCollections
Additional information about funding
Aarhus Universitet; Villum Fonden, Grant/Award Number: 17523License
Related items
Showing items with similar title or keywords.
-
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Convolutional Neural Network Based Sleep Stage Classification with Class Imbalance
Xu, Qi; Zhou, Dongdong; Wang, Jian; Shen, Jiangrong; Kettunen, Lauri; Cong, Fengyu (IEEE, 2022)Accurate sleep stage classification is vital to assess sleep quality and diagnose sleep disorders. Numerous deep learning based models have been designed for accomplishing this labor automatically. However, the class ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
DUNE Collaboration (American Physical Society, 2020)The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ...