Neutrino interaction classification with a convolutional neural network in the DUNE far detector
DUNE Collaboration. (2020). Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Physical Review D, 102(9), Article 092003. https://doi.org/10.1103/PhysRevD.102.092003
Julkaistu sarjassa
Physical Review DTekijät
Päivämäärä
2020Tekijänoikeudet
© Authors, 2020
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Julkaisija
American Physical SocietyISSN Hae Julkaisufoorumista
2470-0010Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47291582
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work wassupported by CNPq, FAPERJ, FAPEG and FAPESP,Brazil; CFI, Institute of Particle Physics and NSERC,Canada; CERN; MŠMT, Czech Republic; ERDF,H2020-EU and MSCA, European Union; CNRS/IN2P3and CEA, France; INFN, Italy; FCT, Portugal; NRF, SouthKorea; Comunidad de Madrid, Fundación“La Caixa”andMICINN, Spain; State Secretariat for Education, Researchand Innovation and SNSF, Switzerland; TÜBİTAK,Turkey; The Royal Society and UKRI/STFC, UnitedKingdom; DOE and NSF, United States of America. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
DUNE Collaboration (Springer Science and Business Media LLC, 2022)Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent ... -
Convolutional Neural Network Based Sleep Stage Classification with Class Imbalance
Xu, Qi; Zhou, Dongdong; Wang, Jian; Shen, Jiangrong; Kettunen, Lauri; Cong, Fengyu (IEEE, 2022)Accurate sleep stage classification is vital to assess sleep quality and diagnose sleep disorders. Numerous deep learning based models have been designed for accomplishing this labor automatically. However, the class ... -
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
DUNE Collaboration (MDPI AG, 2021)The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.