Reliable Numerical Solution of a Class of Nonlinear Elliptic Problems Generated by the Poisson–Boltzmann Equation
Kraus, J., Nakov, S., & Repin, S. (2020). Reliable Numerical Solution of a Class of Nonlinear Elliptic Problems Generated by the Poisson–Boltzmann Equation. Computational Methods in Applied Mathematics, 20(2), 293-319. https://doi.org/10.1515/cmam-2018-0252
Published in
Computational Methods in Applied MathematicsDate
2020Copyright
© 2020 Walter de Gruyter GmbH, Berlin/Boston.
We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson–Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approximation errors. The latter goal is achieved by means of the approach suggested in [] for convex variational problems. Moreover, we establish the error identity, which defines the error measure natural for the considered class of problems and show that it yields computable majorants and minorants of the global error as well as indicators of local errors that provide efficient adaptation of meshes. Theoretical results are confirmed by a collection of numerical tests that includes problems on 2D and 3D Lipschitz domains.
Publisher
Walter de Gruyter GmbHISSN Search the Publication Forum
1609-4840Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/30946703
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
Inverse problems for the minimal surface equation and semilinear elliptic partial differential equations
Nurminen, Janne (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan inversio-ongelmia epälineaarisille osittaisdifferentiaaliyhtälöille, joista erityisesti keskitytään inversio-ongelmiin minimipintayhtälölle ja semilineaarisille yhtälöille. Tässä työssä ... -
Rank Structured Approximation Method for Quasi-Periodic Elliptic Problems
Khoromskij, Boris; Repin, Sergey (de Gruyter, 2017)We consider an iteration method for solving an elliptic type boundary value problem Au=f, where a positive definite operator A is generated by a quasi-periodic structure with rapidly changing coefficients (a typical period ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015) -
Functional a posteriori error equalities for conforming mixed approximations of elliptic problems
Anjam, Immanuel; Pauly, Dirk (University of Jyväskylä, 2014)