Inverse problems for the minimal surface equation and semilinear elliptic partial differential equations
Tässä väitöskirjassa tutkitaan inversio-ongelmia epälineaarisille osittaisdifferentiaaliyhtälöille,
joista erityisesti keskitytään inversio-ongelmiin minimipintayhtälölle ja semilineaarisille yhtälöille.
Tässä työssä näytetään, että ratkaisujen reunamittauksista voidaan saada tietoa geometriasta
tai yhtälön kertoimista. Työn tärkeimpiä työkaluja ovat ensimmäisen asteen ja korkeamman
asteen linearisaatio.
Johdannossa kuvaillaan inversio-ongelmia osittaisdifferentiaaliyhtälöille Calder´onin ongelman
kontekstissa ja annetaan katsaus linearisaatiotekniikoihin liittyvään kirjallisuuteen. Lisäksi esitellään tutkielmaan sisältyvien artikkeleiden päätulokset sekä todistuksiin käytetyt tekniikat.
Artikkelit (A) ja (C) keskittyvät inversio-ongelmiin minimipintayhtälölle. Molemmissa artikkeleissa
minimipintayhtälöä katsotaan euklidisessa avaruudessa, joka on varustettu Riemannin
metriikalla ja reunamittauksista saadaan tietoa tästä metriikasta. Artikkelissa (A) metriikka
on konformisesti euklidinen ja artikkelissa (C) metriikka kuuluu hyväksyttäviin metriikoihin.
Päätyökalu molemmissa artikkeleissa on korkeamman asteen linearisaatio.
Artikkeleissa (B) ja (D) tutkitaan inversio-ongelmia semilineaarisille elliptisille yhtälöille.
Artikkelin (B) yhtälössä on potenssityylinen epälineaarisuus ja tarkoituksena on määrittää rajoittamaton
potentiaali reunamittauksista. Jälleen päätyökaluna on korkeamman asteen linearisaatio.
Artikkelin (D) tarkoituksena on määrittää reunamittauksista yleinen nollannen
asteen epälineaarisuus. Tärkein työkalu on ensimmäinen linearisaatio ja työssä parannetaan
aikaisempia tuloksia tälle tekniikalle semilineaaristen yhtälöiden tapauksessa.
...
This thesis focuses on studying inverse problems for nonlinear elliptic partial differential
equations and in particular inverse problems for the minimal surface equation and semilinear
elliptic equations. It is shown that one can recover information about the coefficients of the
equation or some geometric information from boundary measurements of solutions. The main
tool used is linearization, both first order and higher order linearization.
The introduction describes inverse problems for partial differential equations in the context of
the Calder´on problem and gives a survey of the literature related to the linearization methods.
Main theorems of the included articles are presented and the methods to prove them are also
discussed.
The articles (A) and (C) focus on inverse problems for the minimal surface equation. In both
articles we look at the minimal surface equation in Euclidean space that is equipped with a
Riemannian metric. Then from boundary measurements we determine information about the
metric. In (A) the metric is conformally Euclidean and in (C) the metric will be in a class of
admissible metrics. The main method used in both articles is the higher order linearization
method.
The remaining articles (B) and (D) study inverse problems for semilinear elliptic equations.
In (B) the equation has a power type nonlinearity and the aim is to determine an unbounded
potential from boundary measurements. Also in (B) the method used is the higher order
linearization method. In (D) the focus is on recovering a general zeroth order nonlinearity from
boundary measurements. Here the first linearization is used and we improve previous results
for this method in the case of semilinear equations.
...
Publisher
Jyväskylän yliopistoISBN
978-952-86-0159-3ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Nurminen, J. (2023). An inverse problem for the minimal surface equation. Nonlinear Analysis : Theory, Methods and Applications, 227, Article 113163. DOI: 10.1016/j.na.2022.113163
- Artikkeli III: Nurminen, J. (2023). Determining an unbounded potential for an elliptic equation with a power type nonlinearity. Journal of Mathematical Analysis and Applications, 523(1), Article 126962. DOI: 10.1016/j.jmaa.2022.126962
- Artikkeli III: Nurminen, J. An inverse problem for the minimal surface equation in the presence of a Riemannian metric. Preprint
- Artikkeli IV: Johansson, D.; Nurminen, J. and Salo, M. Inverse problems for semilinear elliptic PDE with a general nonlinearity a(x, u). Preprint
Metadata
Show full item recordCollections
- JYU Dissertations [806]
- Väitöskirjat [3524]
License
Related items
Showing items with similar title or keywords.
-
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ... -
Reliable Numerical Solution of a Class of Nonlinear Elliptic Problems Generated by the Poisson–Boltzmann Equation
Kraus, Johannes; Nakov, Svetoslav; Repin, Sergey (Walter de Gruyter GmbH, 2020)We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson–Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class ... -
Inverse problems for semilinear elliptic PDE with measurements at a single point
Salo, Mikko; Tzou, Leo (American Mathematical Society (AMS), 2023)We consider the inverse problem of determining a potential in a semilinear elliptic equation from the knowledge of the Dirichlet-to-Neumann map. For bounded Euclidean domains we prove that the potential is uniquely determined ... -
On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
Matculevich, Svetlana; Wolfmayr, Monika (Elsevier, 2018)This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker–Planck problem appearing in computational neuroscience. ...