The Light Ray Transform in Stationary and Static Lorentzian Geometries
Feizmohammadi, A., Ilmavirta, J., & Oksanen, L. (2021). The Light Ray Transform in Stationary and Static Lorentzian Geometries. Journal of Geometric Analysis, 31(4), 3656-3682. https://doi.org/10.1007/s12220-020-00409-y
Published in
Journal of Geometric AnalysisDate
2021Discipline
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsCopyright
© The Authors 2020
Given a Lorentzian manifold, the light ray transform of a function is its integrals along null geodesics. This paper is concerned with the injectivity of the light ray transform on functions and tensors, up to the natural gauge for the problem. First, we study the injectivity of the light ray transform of a scalar function on a globally hyperbolic stationary Lorentzian manifold and prove injectivity holds if either a convex foliation condition is satisfied on a Cauchy surface on the manifold or the manifold is real analytic and null geodesics do not have cut points. Next, we consider the light ray transform on tensor fields of arbitrary rank in the more restrictive class of static Lorentzian manifolds and show that if the geodesic ray transform on tensors defined on the spatial part of the manifold is injective up to the natural gauge, then the light ray transform on tensors is also injective up to its natural gauge. Finally, we provide applications of our results to some inverse problems about recovery of coefficients for hyperbolic partial differential equations from boundary data.
...
Publisher
SpringerISSN Search the Publication Forum
1050-6926Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35315024
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Postdoctoral Researcher, AoFAdditional information about funding
A.F. was supported by EPSRC Grant EP/P01593X/1, J.I. was supported by the Academy of Finland (decision 295853) and L.O. was supported by the EPSRC Grants EP/P01593X/1 and EP/R002207/1.License
Related items
Showing items with similar title or keywords.
-
On mixed and transverse ray transforms on orientable surfaces
Ilmavirta, Joonas; Mönkkönen, Keijo; Railo, Jesse (Walter de Gruyter GmbH, 2023)The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a surface can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an ... -
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, Joonas; Mönkkönen, Keijo (Springer Science and Business Media LLC, 2023)We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Tensor Tomography on Negatively Curved Manifolds of Low Regularity
Ilmavirta, Joonas; Kykkänen, Antti (Springer, 2024)We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature. The proof of the result rests on Pestov energy estimates ...