Näytä suppeat kuvailutiedot

dc.contributor.authorFeizmohammadi, Ali
dc.contributor.authorIlmavirta, Joonas
dc.contributor.authorOksanen, Lauri
dc.date.accessioned2020-04-28T09:47:02Z
dc.date.available2020-04-28T09:47:02Z
dc.date.issued2021
dc.identifier.citationFeizmohammadi, A., Ilmavirta, J., & Oksanen, L. (2021). The Light Ray Transform in Stationary and Static Lorentzian Geometries. <i>Journal of Geometric Analysis</i>, <i>31</i>(4), 3656-3682. <a href="https://doi.org/10.1007/s12220-020-00409-y" target="_blank">https://doi.org/10.1007/s12220-020-00409-y</a>
dc.identifier.otherCONVID_35315024
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68739
dc.description.abstractGiven a Lorentzian manifold, the light ray transform of a function is its integrals along null geodesics. This paper is concerned with the injectivity of the light ray transform on functions and tensors, up to the natural gauge for the problem. First, we study the injectivity of the light ray transform of a scalar function on a globally hyperbolic stationary Lorentzian manifold and prove injectivity holds if either a convex foliation condition is satisfied on a Cauchy surface on the manifold or the manifold is real analytic and null geodesics do not have cut points. Next, we consider the light ray transform on tensor fields of arbitrary rank in the more restrictive class of static Lorentzian manifolds and show that if the geodesic ray transform on tensors defined on the spatial part of the manifold is injective up to the natural gauge, then the light ray transform on tensors is also injective up to its natural gauge. Finally, we provide applications of our results to some inverse problems about recovery of coefficients for hyperbolic partial differential equations from boundary data.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.rightsCC BY 4.0
dc.subject.otherinverse problems
dc.subject.otherlight ray transform
dc.subject.otherwave equation
dc.titleThe Light Ray Transform in Stationary and Static Lorentzian Geometries
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202004282943
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3656-3682
dc.relation.issn1050-6926
dc.relation.numberinseries4
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber295853
dc.subject.ysoinversio-ongelmat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s12220-020-00409-y
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationA.F. was supported by EPSRC Grant EP/P01593X/1, J.I. was supported by the Academy of Finland (decision 295853) and L.O. was supported by the EPSRC Grants EP/P01593X/1 and EP/R002207/1.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0