The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
Ilmavirta, J., & Mönkkönen, K. (2023). The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds. Journal of Geometric Analysis, 33(4), Article 137. https://doi.org/10.1007/s12220-022-01182-w
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2023Oppiaine
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsTekijänoikeudet
© The Author(s) 2023
We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce the injectivity problem to the invertibility of generalized Abel transforms and by Taylor expansions of geodesics we show that these Abel transforms are injective. Our result has applications in linearized boundary rigidity problem on Finsler manifolds and especially in linearized elastic travel time tomography.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1050-6926Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/177111625
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SA; Akatemiatutkijan tutkimuskulut, SA; Huippuyksikkörahoitus, SA; Akatemiahanke, SALisätietoja rahoituksesta
J.I. was supported by Academy of Finland (Grants 332890, 336254, 351665, 351656). K.M. was supported by Academy of Finland (Center of Excellence in Inverse Modeling and Imaging, Grant Numbers 284715 and 309963). We wish to thank the anonymous referee for feedback. Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Tensor Tomography on Negatively Curved Manifolds of Low Regularity
Ilmavirta, Joonas; Kykkänen, Antti (Springer, 2024)We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature. The proof of the result rests on Pestov energy estimates ... -
On mixed and transverse ray transforms on orientable surfaces
Ilmavirta, Joonas; Mönkkönen, Keijo; Railo, Jesse (Walter de Gruyter GmbH, 2023)The geodesic ray transform, the mixed ray transform and the transverse ray transform of a tensor field on a surface can all be seen as what we call mixing ray transforms, compositions of the geodesic ray transform and an ... -
Spherically Symmetric Terrestrial Planets with Discontinuities Are Spectrally Rigid
Ilmavirta, Joonas; de Hoop, Maarten V.; Katsnelson, Vitaly (Springer, 2024)We establish spectral rigidity for spherically symmetric manifolds with boundary and interior interfaces determined by discontinuities in the metric under certain conditions. Rather than a single metric, we allow two ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.