The fractional Calderón problem : Low regularity and stability
Rüland, A., & Salo, M. (2020). The fractional Calderón problem : Low regularity and stability. Nonlinear Analysis: Theory, Methods and Applications, 193, 111529. https://doi.org/10.1016/j.na.2019.05.010
Published in
Nonlinear Analysis: Theory, Methods and ApplicationsDate
2020Copyright
© 2019 Elsevier Ltd
The Calderón problem for the fractional Schrödinger equation was introduced in the work Ghosh et al. (to appear)which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant Lp or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli–Silvestre extension and a duality argument.
Publisher
ElsevierISSN Search the Publication Forum
0362-546XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/30885715
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
ERC Consolidator Grant; FP7 (EU's 7th Framework Programme); Centre of Excellence, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
A.R. gratefully acknowledges a Junior Research Fellowship at Christ Church. M.S. was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, grant number 284715 ) and by the European Research Council under FP7/2007–2013 ( ERC StG 307023 ) and Horizon 2020 ( ERC CoG 770924 ).License
Related items
Showing items with similar title or keywords.
-
The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2022)We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse (American Institute of Mathematical Sciences (AIMS), 2021)We prove a unique continuation property for the fractional Laplacian (−Δ)s when s∈(−n/2,∞)∖Z where n≥1. In addition, we study Poincaré-type inequalities for the operator (−Δ)s when s≥0. We apply the results to show that ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ... -
The higher order fractional Calderón problem for linear local operators : Uniqueness
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse; Uhlmann, Gunther (Elsevier, 2022)We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that ...