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THE FRACTIONAL CALDERÓN PROBLEM: LOW REGULARITY

AND STABILITY

ANGKANA RÜLAND AND MIKKO SALO

Abstract. The Calderón problem for the fractional Schrödinger equation was intro-
duced in the work [GSU16], which gave a global uniqueness result also in the partial
data case. This article improves this result in two ways. First, we prove a quantitative
uniqueness result showing that this inverse problem enjoys logarithmic stability under
suitable a priori bounds. Second, we show that the results are valid for potentials
in scale-invariant Lp or negative order Sobolev spaces. A key point is a quantitative
approximation property for solutions of fractional equations, obtained by combining
a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a
duality argument.

1. Introduction

The inverse conductivity problem posed by Calderón [Ca80] asks to determine the
electrical conductivity of a medium from measurements of electrical voltage and current
on its boundary. A closely related problem concerns the Schrödinger equation: if Ω ⊂ Rn
is a bounded C∞ domain and q ∈ L∞(Ω), consider the Dirichlet problem

(−∆ + q)u = 0 in Ω, u|∂Ω = f.

Assuming that 0 is not a Dirichlet eigenvalue of the operator −∆ + q in Ω, this problem
has a unique solution u ∈ H1(Ω) for any f ∈ H1/2(∂Ω). Then one can define boundary
measurements via the Dirichlet-to-Neumann map Λq (DN map for short), given by

Λq : H1/2(∂Ω)→ H−1/2(∂Ω), Λqf = ∂νu|∂Ω.

Here, the normal derivative of the solution u is interpreted in the weak sense. The
Calderón problem for the Schrödinger equation consists in determining the potential q
in Ω from the knowledge of the boundary map Λq.

There is a substantial literature on the Calderón problem and its many variants. In
the case n ≥ 3, [SU87] proved the fundamental uniqueness result: the map Λq deter-
mines q ∈ L∞(Ω) uniquely. A reconstruction procedure was given in [Na88]. Stability,
or quantitative uniqueness, was established in [Al88]: the inverse map of q 7→ Λq, when
restricted to a suitable compact subset of L∞(Ω), has a logarithmic modulus of conti-
nuity. Furthermore, logarithmic stability is optimal in general [Ma01], meaning that the
inverse problem is highly ill-posed.

One can also consider the Calderón problem for low regularity coefficients. Uniqueness
holds for q ∈ Ln/2(Ω) [Ch90, LN91] (this condition is invariant under the scaling of the
equation and also optimal for unique continuation), and in some cases even for q ∈W−1,n

[HT13, Ha15, Ha17] (this condition corresponds to conductivities in W 1,n). The case
1
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n = 2 typically requires different methods, and corresponding results may be found in
[Bu08, NS10, BIY15, AFR16]. We refer to [Uh14] for further references.

In this work we continue the line of research initiated in [GSU16], which considered an
inverse problem for the fractional Schrödinger equation. Let us formulate the problem.
Let 0 < s < 1, and denote by (−∆)s the fractional Laplacian defined by (−∆)su =
F−1{|ξ|2sû(ξ)} where Fu = û is the Fourier transform of u. We denote the L2 Sobolev
spaces by Hs, and Lp Sobolev spaces by W s,p (see Section 2 for precise definitions). Let
Ω ⊂ Rn be a bounded open set, and consider solutions u ∈ Hs(Rn) of the fractional
Schrödinger equation

((−∆)s + q)u = 0 in Ω.

Since the fractional Laplacian is nonlocal, it is natural to consider the exterior Dirichlet
problem where one prescribes the value of u in the exterior domain

Ωe = Rn \ Ω.

The work [GSU16] gave a global uniqueness result, also with partial or disjoint data,
for a related inverse problem when q ∈ L∞(Ω) (see [GLX17] for an extension). This
condition for q is convenient but it is certainly not optimal, and it does not respect the
natural scaling of the equation. If u(x) and q(x) are replaced by u(λx) and λ2sq(λx),

then ((−∆)s + q)u(x) is replaced by λ2s((−∆)su + qu)(λx). The L
n
2s norm, or more

generally the Ẇ−s,n/s norm, is invariant under this transformation of q.
The choice of the largest possible space of singular potentials is slightly delicate. As

discussed in Section 2, such potentials may exhibit nonlocal features and are actually
defined in Rn instead of just Ω. We will consider singular potentials in Z−s(Rn), which
is the set of pointwise multipliers from Hs(Rn) to H−s(Rn):

Definition. Let U ⊂ Rn be an open set, and let s ≥ 0. If q ∈ D′(U), define

‖q‖Z−s(U) = sup{ |(q, u1u2)U | ; uj ∈ C∞c (U), ‖uj‖Hs(Rn) = 1},

and let Z−s(U) be the subspace of D′(U) equipped with this norm. Moreover, let Z−s0 (U)
be the closure of C∞c (U) in Z−s(U). Here, ( · , · )U is the distributional pairing in U .

The stability result is naturally formulated in terms of the Z−s(Ω) norm. However,
the assumption q ∈ Z−s0 (Rn) ensures wellposedness for the exterior Dirichlet problem
and the existence of a DN map (cf. Section 2). It is proved in Section 2 that for 0 < s < 1
one has the continuous embeddings

L
n
2s (Rn) ⊂W−s,n/s(Rn) ⊂ Z−s0 (Rn) ⊂ H−sloc (Rn).

Let q ∈ Z−s0 (Rn), and observe that q gives rise to a unique map mq : Hs(Rn) →
H−s(Rn) with (mq(u), v)Rn = (q, uv)Rn if u, v ∈ C∞c (Rn). Throughout the remainder
of the article and in particular in all our main results we will assume that 0 is not an
eigenvalue of the exterior problem:

(1.1)

{
if u ∈ Hs(Rn) solves (−∆)su+mq(u) = 0 in Ω and u|Ωe = 0,

then u ≡ 0.

Under this condition, the exterior Dirichlet problem has a unique solution u ∈ Hs(Rn)
for any exterior value f ∈ Hs(Rn). One can define boundary measurements via the
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(exterior) DN map Λq, formally given by the nonlocal Neumann operator (see [GSU16])

Λq : Hs(Ωe)→ (Hs(Ωe))
∗, Λqf = (−∆)suf |Ωe

where uf ∈ Hs(Rn) solves (−∆)su+mq(u) = 0 in Ω with u|Ωe = f .
Our first result is a uniqueness theorem for low regularity potentials with partial

exterior measurements, possibly in disjoint sets.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 1, be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ Z−s0 (Rn) satisfy (1.1). Let also W1, W2 be open subsets of Ωe. If

Λq1f |W2 = Λq2f |W2 for any f ∈ C∞c (W1),

then q1|Ω = q2|Ω.

Remark. The previous theorem extends the result of [GSU16] from potentials in L∞(Ω)

to more singular ones, including those in L
n
2s (Ω) and also those that are roughly in

W−s,n/s and vanish outside Ω. This corresponds to potentials in L
n
2 or W−1,n (and

hence to conductivities in W 1,n) in the standard Calderón problem. The conclusion
is that the DN map determines the potential in Ω, even though a general potential in
Z−s0 (Rn) may also be nonzero outside of Ω.

Somewhat surprisingly, Theorem 1.1 follows by estimates in L2 based Sobolev spaces
and a small modification of the argument in [GSU16]. This is in contrast with the
standard Calderón problem, where Lp estimates and methods from harmonic analysis
are typically required to deal with singular potentials. Roughly, this difference is due
to the fact that while it is possible to construct complex geometrical optics solutions in
H1(Ω), the corresponding L2-based error estimates do not yield sufficient decay in the
presence of rough potentials. Hence, in the standard Calderón problem one works with
alternative, Lp-based function spaces having better error estimates. In contrast, in the
fractional Calderón problem the Runge approximation argument directly provides the
required error estimates in Hs(Ω).

Note also that in the fractional Calderón problem the same method applies in all
dimensions n ≥ 1. The standard Calderón problem is trivial when n = 1, but the
fractional problem is nontrivial and can indeed be solved.

The next result is a quantitative version of Theorem 1.1, which gives a stability
result for this inverse problem. It is well known that inverse problems of this type are
typically highly ill-posed, and one needs to impose a priori conditions on the coefficients
to obtain any stability. We will show that if the potentials satisfy an a priori bound in
Z−s+δ(Ω) (which corresponds to a priori bounds in W−s+δ,p for suitable p), then the
inverse problem has logarithmic stability exactly as in the standard Calderón problem.

Theorem 1.2. Let Ω ⊂ Rn, n ≥ 1, be a bounded C∞ domain, let 0 < s < 1, and
let W1,W2 be open subsets of Ωe. Assume that q1, q2 ∈ Z−s0 (Rn), and that for some
δ,M > 0 the potentials have the bounds

‖qj‖Z−s+δ(Ω) ≤M, j = 1, 2.

Assume also that q1, q2 satisfy (1.1). Then one has

‖q1 − q2‖Z−s(Ω) ≤ ω(‖Λq1 − Λq2‖∗),
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where ω is a modulus of continuity satisfying

ω(t) ≤ C|log t|−σ, 0 ≤ t ≤ 1

for some C and σ depending only on Ω, n, s,W1,W2, δ,M .

Remark. The norm ‖ · ‖∗ for the DN map with partial data is given by

‖A‖∗ = sup{ (Af1, f2) ; fj ∈ C∞c (Wj), ‖fj‖Hs = 1}.

It is also possible to obtain stability estimates in other norms. For instance, if qj are

slightly better than L
n
2s , i.e. for some δ > 0 one has

‖qj‖W δ, n2s (Ω)
≤M, j = 1, 2,

then one has a stability estimate

‖q1 − q2‖L n
2s (Ω)

≤ ω(‖Λq1 − Λq2‖∗)

where ω is a logarithmic modulus of continuity. This follows by interpolating the estimate
in Theorem 1.2 and the a priori bound in W δ, n

2s (Ω), cf. Proposition 8.4.

The uniqueness result in [GSU16] was based on two main components. The first
component was a strong uniqueness property for the fractional Laplacian, stating that
any u in Rn that satisfies u|W = (−∆)su|W = 0 in some open set W is identically
zero. (We note that related results appear in the mathematical physics literature in
connection with anti-locality and the Reeh-Schlieder theorem, see [Ve93].) The second
component was a strong approximation property, stating that any f ∈ L2(Ω) can be
approximated by functions u|Ω where ((−∆)s + q)u = 0 in Ω and one can control the
support of u. This strong approximation result was first proved in [DSV17] for the
fractional Laplacian and Ck norms. Related results for other equations and norms are
given in [DSV19, GSU16, RS17].

The most substantial part of the present paper is to establish suitable quantitative
versions of the uniqueness and approximation properties. In essence, this boils down
to quantitative versions of the unique continuation principle and Runge approxima-
tion property for the fractional equation. In the case of second order elliptic PDE,
related quantitative unique continuation statements have been established (see for in-
stance [ARRV09]), but for the Runge approximation property we were not able to find
suitable quantitative statements even for harmonic functions in the literature. However,
it turns out that the problem is closely related to the notion of cost of controllability
in the control theory literature. Thus we will use ideas from [Ro95], [Ph04] in order to
pass from quantitative uniqueness to the required form of quantitative approximation.

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 1, be a bounded C∞ domain, let 0 < s < 1, and let
W ⊂ Ωe be open. Let also q ∈ Z−s0 (Rn) satisfy ‖q‖Z−s+δ(Ω) ≤ M for some δ,M > 0

and assume further that it satisfies (1.1). There is a logarithmic modulus of continuity
ω depending on δ,Ω,W,M, s so that

‖v‖H−s(Ω) ≤ ω(‖(−∆)sw‖H−s(W )), for any v ∈ L2(Ω) with ‖v‖L2(Ω) = 1,

where w ∈ Hs(Rn) solves (−∆)sw +mq(w) = v in Ω with w|Ωe = 0.
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This is indeed a quantitative uniqueness statement, since it implies that any suitable
function w in Rn that satisfies w|Ωe = (−∆)sw|W = 0 must be identically zero. The
proof of Theorem 1.3 follows from a careful analysis of propagation of smallness for
the Caffarelli-Silvestre extension, analogous to [ARRV09] where the case s = 1/2 was
studied. To achieve this, we will employ three balls inequalities and Lebeau-Robbiano
type interpolation inequalities based on Carleman estimates from [Rü15] together with
a new Carleman estimate (Proposition 5.7). See also [FF14], [Yu17] for the frequency
function approach towards unique continuation for fractional equations and [Se15] for
weak unique continuation in rough function spaces.

The previous uniqueness result together with a duality argument will yield the required
quantitative approximation result:

Theorem 1.4. Let Ω ⊂ Rn, n ≥ 1, be a bounded C∞ domain, let 0 < s < 1, and let
W ⊂ Ωe be open and Lipschitz with Ω ∩W = ∅. Let q ∈ Z−s0 (Rn) satisfy (1.1) and also
the bound ‖q‖Z−s+δ(Ω) ≤M for some δ,M > 0.

There are constants C, µ > 0 (depending only on Ω, n, s,W, δ,M) so that for any
v ∈ Hs

Ω
with ‖v‖Hs

Ω
= 1 and for any ε > 0, there exists fε ∈ Hs

W
so that

‖Pqfε|Ω − v|Ω‖L2(Ω) ≤ ε, ‖fε‖Hs
W
≤ CeCε−µ‖v‖L2(Ω).

Here Hs
F = {u ∈ Hs(Rn) ; supp(u) ⊂ F} for a closed subset F of Rn, and Pq is the

Poisson operator

Pq : Hs
W
→ Hs(Rn), f 7→ uf(1.2)

where uf ∈ Hs(Rn) is the solution of (−∆)su+mq(u) = 0 in Ω with u|Ωe = f .
Theorem 1.4 can be viewed as a quantification of the qualitative approximation results

from [DSV17, GSU16]. In Lemma 3.6 we also give a constructive procedure providing
these approximations.

Remark. Theorems 1.2–1.4 are optimal, in the sense that the logarithmic character of
the modulus of continuity or the exponential cost of approximation cannot be improved
in general [RS18]. See the survey [Sa17] for further results on fractional inverse problems
that have appeared after this preprint was first submitted.

It is possible to formulate similar approximation results as in Theorem 1.4 in other
related function spaces (cf. Lemma 8.2). The proofs are sufficiently constructive so that
the constants in the above theorems can be estimated in terms of the given quantities.

The remainder of the article is structured as follows: In Section 2 we discuss the
functional analytic set-up of our problem, which allows us to deduce well-posedness of
the forward problem for a large class of potentials. Next, we explain the relation between
quantitative unique continuation and controllability in Section 3 (c.f. Lemma 3.3). To
prepare for the quantitative propagation of smallness estimates, we recall important
properties of the Caffarelli-Silvestre extension in Section 4. Here we also collect basic
inequalities which will be used in the sequel. Based on this we treat the quantitative
unique continuation properties of the associated Caffarelli-Silvestre extension in Section
5. Here our main result is formulated in Theorem 5.5. Relying on auxiliary results
from Section 6, where we recall the Vishik-Eskin regularity estimates for the fractional
Laplacian, we finally return to the proofs of our main results, Theorems 1.1-1.4, in



THE FRACTIONAL CALDERÓN PROBLEM: LOW REGULARITY AND STABILITY 6

Sections 7 and 8. To this end, we first deduce the approximation results of Theorems 1.3
and 1.4 in Section 7. Using these, we then prove the uniqueness and stability properties
of the Calderón problem in Section 8. In this context, we also illustrate that it is possible
to obtain stability in other norms by interpolating the results from Theorem 1.2 with
suitable a priori bounds (c.f. Proposition 8.4).

Acknowledgements. A.R. gratefully acknowledges a Junior Research Fellowship at
Christ Church. M.S. was supported by the Academy of Finland (Finnish Centre of
Excellence in Inverse Problems Research, grant number 284715) and by the European
Research Council under FP7/2007-2013 (ERC StG 307023) and Horizon 2020 (ERC
CoG 770924).

2. Preliminaries

In this section we establish the notation for Sobolev spaces and discuss weak solu-
tions of the fractional Schrödinger equation with singular potentials. The notation and
treatment partly follows [GSU16].

2.1. Sobolev spaces. Write W s,p(Rn), where s ∈ R and 1 < p < ∞, for the Lp based
Sobolev space with norm

‖u‖W s,p(Rn) = ‖〈D〉su‖Lp(Rn).

Here 〈ξ〉 = (1 + |ξ|2)1/2, and m(D)u = F−1{m(ξ)û(ξ)} whenever m ∈ C∞(Rn) is
polynomially bounded together with its derivatives and u is a tempered distribution.
We will sometimes also use the homogeneous Sobolev norms

‖u‖Ẇ s,p(Rn) = ‖|D|su‖Lp(Rn).

Our notation for the Fourier transform is

û(ξ) = Fu(ξ) =

∫
Rn
e−ix·ξu(x) dx.

If U ⊂ Rn is an open set, define the spaces

W s,p(U) = {u|U ; u ∈W s,p(Rn)},

W̃ s,p(U) = closure of C∞c (U) in W s,p(Rn),

W s,p
0 (U) = closure of C∞c (U) in W s,p(U).

We equip W s,p(U) with the quotient norm

‖u‖W s,p(U) = inf{‖w‖W s,p ; w ∈W s,p(Rn), w|U = u}.

Moreover, if F ⊂ Rn is a closed set, we define

W s,p
F = W s,p

F (Rn) = {u ∈W s,p(Rn) ; supp(u) ⊂ F}.

In the special case p = 2, we will write Hs = W s,2, Hs
F = W s,2

F etc. If U ⊂ Rn is
open, one has the duality assertions [CHM17, Theorem 3.3]

(H̃s(U))∗ = H−s(U), (Hs(U))∗ = H̃−s(U), s ∈ R.
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If Ω is a bounded Lipschitz domain, then (see [CHM17, Lemma 3.15, Corollary 3.29 and
Lemma 3.31])

H̃s(Ω) = Hs
Ω
, s ∈ R,

Hs
0(Ω) = Hs

Ω
, s > −1/2, s /∈ {1/2, 3/2, ...},

Hs
0(Ω) = Hs(Ω), s ≤ 1/2.

If Ω is a bounded C∞ domain in Rn and if 1 < p < ∞, then one has the relations (see
[Tr78, Section 4.3])

W̃ s,p(Ω) = W s,p

Ω
, s ∈ R,

W s,p(Ω) = W s,p
0 (Ω), s ≤ 1/p.

Remark 2.1. There are many Sobolev spaces defined above. The spaces H̃s(Ω) are
mostly needed to formulate Theorem 1.1 for arbitrary bounded open sets. If Ω is a

Lipschitz (or C∞) domain, one always has H̃s(Ω) = Hs
Ω

and it is more convenient to
work with the Hs

Ω
spaces.

Solutions to fractional equations will typically be of the form u = f+v, where f ∈ Hs
Ωe

is the exterior Dirichlet data and v ∈ Hs
Ω

. Moreover, the identity

Hs
0(Ω) = Hs

Ω
, s > −1/2, s /∈ {1/2, 3/2, ...},

shows that for this range of s the norms ‖v‖Hs
Ω

and ‖v|Ω‖Hs(Ω) are equivalent for v ∈ Hs
Ω

,

and it is possible to switch between these norms if required.

2.2. Spaces of potentials. The paper [GSU16] gave a uniqueness result in the Calderón
problem for the fractional Schrödinger equation ((−∆)s + q)u = 0 in Ω for potentials
q ∈ L∞(Ω). This was based on using the bilinear form

Bq(u, v) = ((−∆)s/2u, (−∆)s/2v)Rn + (qrΩu, rΩv)Ω, u, v ∈ Hs(Rn),

where rΩ denotes the restriction operator to Ω. The definition of the DN map also
required that this bilinear form is well defined for all u, v ∈ Hs(Rn).

If we wish to extend this setup to singular potentials, in general one could ask that q
is an object in Ω that satisfies

|(q, uv)Ω| ≤ C‖u‖Hs(Ω)‖v‖Hs(Ω).

However, since C∞c (Ω) is not in general dense in Hs(Ω), the set of such objects q would
not be a subspace of D′(Ω). This is analogous to that fact that (Hs(Ω))∗ is not in general
a subspace of D′(Ω). However, (Hs(Ω))∗ may be identified with a subspace of D′(Rn)

(the space H̃−s(Ω) as discussed above). Similarly, we will consider a class of singular
potentials that is a subspace of D′(Rn).

Remark. More generally one could study an abstract class of nonlocal potentials, given
in terms of a bounded bilinear form Q : Hs(Rn) ×Hs(Rn) → R. The bilinear form for
the fractional equation would be

BQ(u, v) = ((−∆)s/2u, (−∆)s/2v)Rn +Q(u, v), u, v ∈ Hs(Rn).
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By the Schwartz kernel theorem, one would formally have

Q(u, v) =

∫
Rn

∫
Rn
q(x, y)u(y)v(x) dx dy

for some q ∈ S ′(Rn × Rn), which would correspond to a nonlocal potential. If Q is
infinitesimally form bounded (see [RS75], Definition after Theorem X.17) in the sense
that for any ε > 0 there is Cε > 0 such that

|Q(u, u)| ≤ ε‖(−∆)s/2u‖2L2 + Cε‖u‖2L2 , u ∈ Hs(Rn),

then the exterior Dirichlet problem is well-posed and the DN map is well defined. Al-
though the determination of q|Ω×Ω from the knowledge of Λq poses an interesting prob-
lem, its nonlocal nature provides additional difficulties compared to the situation with
potentials in Z−s0 (Rn). Thus, we will only consider potentials given by suitable functions
q ∈ D′(Rn) in this paper.

The next definition introduces the spaces of rough potentials that will be used.

Definition. Let U ⊂ Rn be an open set, and let s ≥ 0. If q ∈ D′(U) define

‖q‖Z−s(U) = sup{ |(q, u1u2)U | ; uj ∈ C∞c (U), ‖uj‖Hs(Rn) = 1},

and let Z−s(U) be the subspace of D′(U) equipped with this norm. Moreover, let Z−s0 (U)
be the closure of C∞c (U) in Z−s(Rn).

A function q ∈ Z−s(Rn) gives rise to a map mq : Hs(Rn) → H−s(Rn) defined by
(mq(u), v)Rn = (q, uv)Rn if u, v ∈ Hs(Rn). In the sequel, for convenience we will simply
write qu for mq(u).

The next result gives some properties of Z−s(Rn) and Z−s(Ω). See [MS09, Chapter

12] for a precise characterization of Z−1/2(Rn).

Lemma 2.2. If 0 < s < 1 and ε > 0, one has the continuous embeddings

L
n
2s (Rn) ⊂W−s,n/s(Rn) ⊂ Z−s0 (Rn) ⊂ Z−s(Rn) ⊂ 〈x〉n/2+εH−s(Rn).

Moreover, if Ω is a bounded C∞ domain and d(x) ∈ C∞(Ω) is such that in a neigh-
bourhood of ∂Ω it coincides with dist(x, ∂Ω) and is (strictly) positive outside of that
neighbourhood, then for any ε > 0 one has the continuous embedding

Z−s(Ω) ⊂ d(x)−s+1/2−εH−s(Ω).

For the proof of the last statement, we need a simple auxiliary result where Bs
pq(Rn)

is the standard Besov space, c.f. [Tr83], [BCD11] (the proof is deferred to the end of
this section):

Lemma 2.3. Let Ω ⊂ Rn be a bounded C∞ domain. Let d(x) ∈ C∞(Ω) be such that in
a neighbourhood of ∂Ω it coincides with dist(x, ∂Ω) and is (strictly) positive outside of
that neighbourhood. If a > −1, then

e+d(x)a ∈ Ba+1/p
p∞ (Rn) for 1 ≤ p ≤ ∞

where e+ denotes extension by zero from Ω to Rn.
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Proof of Lemma 2.2. If q ∈ L
n
2s (Rn), then

‖q‖
W−s,

n
s (Rn)

= sup
‖u‖

Ws,(n/s)′ (Rn)
=1

(q, u)Rn ≤ sup
‖u‖

Ws,(n/s)′ (Rn)
=1
‖q‖

L
n
2s (Rn)

‖u‖
L( n2s )′ (Rn)

≤ C‖q‖
L
n
2s (Rn)

by the Sobolev embedding W s,(n
s

)′(Rn) ⊂ L( n
2s

)′(Rn). If q ∈W−s,n/s(Rn), then

‖q‖Z−s(Rn) = sup
‖uj‖Hs=1

(q, u1u2)Rn ≤ sup
‖uj‖Hs(Rn)=1

‖q‖W−s,n/s(Rn)‖u1u2‖W s,(n/s)′ (Rn)

≤ C‖q‖W−s,n/s(Rn)

by the Kato-Ponce type inequality Hs(Rn)Hs(Rn) ⊂ W s,(n/s)′(Rn) (see for instance

[GO14, Theorem 1(2)]). This proves that L
n
2s (Rn) ⊂ W−s,

n
s (Rn) ⊂ Z−s(Rn). Since

C∞c (Rn) is dense in W−s,n/s(Rn), it also follows that W−s,n/s(Rn) ⊂ Z−s0 (Rn). In
addition, if q ∈ Z−s(Rn) and ε > 0, then

‖〈x〉−n/2−εq‖H−s(Rn) = sup
‖u‖Hs=1

(〈x〉−n/2−εq, u)Rn

= sup
‖u‖Hs=1

(q, 〈x〉−n/2−εu)Rn ≤ C‖q‖Z−s(Rn)

using that 〈x〉−n/2−ε ∈ Hs(Rn) and that C∞c (Rn) is dense in Hs(Rn). This shows the
first chain of embeddings.

For the second statement, let q ∈ Z−s(Ω) and let a = s− 1/2 + ε for some ε > 0, so

that e+d
a ∈ Bs+ε

2∞ (Rn) by Lemma 2.3. It follows that e+d
a ∈ Hs

Ω
= H̃s(Ω), and there

are χj ∈ C∞c (Ω) with χj → e+d
a in Hs(Rn). For any fixed ϕ ∈ C∞c (Ω) one has

(q, daϕ)Ω = lim
j→∞

(q, χjϕ)Ω

≤ ‖q‖Z−s(Ω)‖e+d
a‖Hs(Rn)‖ϕ‖Hs(Rn).

This shows that daq can be considered as a bounded linear functional on H̃s(Ω), hence
daq ∈ H−s(Ω) and ‖daq‖H−s(Ω) ≤ C‖q‖Z−s(Ω). �

Remark 2.4. If Ω ⊂ Rn is a bounded open set and 0 < s < n/2, one in particular has
(after taking zero extensions)

L
n
2s (Ω) ⊂ Z−s0 (Rn)

and more generally

W̃−s,n/s(Ω) ⊂ Z−s0 (Rn).

Moreover, if Ω is a bounded Lipschitz domain and 0 < s < n
n+1 , then there are isomor-

phisms W̃−s,n/s(Ω) ≈ W
−s,n/s
Ω

≈ W−s,n/s(Ω) [Tr02, Proposition 3.1]. Thus under these

assumptions one has
W−s,n/s(Ω) ⊂ Z−s0 (Rn).

Remark 2.5. The set C∞c (Rn) is dense in Z−s+δcomp (Rn) with respect to the Z−s(Rn)

norm, where Z−s+δcomp (Rn) := Z−s+δ(Rn) ∩ E ′(Rn). Indeed, to observe this, it suffices to
show that

‖q ∗ ρε − q‖Z−s(Rn) → 0 as ε→ 0,(2.1)
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if q ∈ Z−s+δcomp (Rn) and ρε is a standard mollifier, i.e., ρε(x) = ε−nρ(ε−1x), where ρ ∈
C∞c (Rn), supp(ρ) ⊂ B1, ρ ≥ 0, ρ(x) = ρ(−x),

∫
Rn
ρ(x)dx = 1. To deduce (2.1), we note

that for u1, u2 ∈ C∞c (Rn),

(q − q ∗ ρε, u1u2)Rn = (q, u1u2 − (u1u2) ∗ ρε)Rn

=

∫
Rn

q(x)

∫
Rn

[(u1u2)(x)− (u1u2)(x− y)]ρε(y) dy dx

=

∫
Rn

q(x)

∫
Rn

ρε(y)[u1(x)(u2(x)− u2(x− y)) + u2(x− y)(u1(x)− u1(x− y))] dy dx

≤ ‖q‖Z−s+δ(Rn)‖u1‖Hs−δ(Rn)

∫
Bε(0)

ρε(y)‖u2 − u2(· − y)‖Hs−δ(Rn) dy

+ ‖q‖Z−s+δ(Rn)‖u2‖Hs−δ(Rn)

∫
Bε(0)

ρε(y)‖u1 − u1(· − y)‖Hs−δ(Rn) dy

≤ ε
δ

1+δ ‖q‖Z−s+δ(Rn)‖u1‖Hs(Rn)‖u2‖Hs(Rn).

Here we used that

‖u1 − u1(· − y)‖Hs−δ(Rn) = ‖(e−iξ·y − 1)〈ξ〉s−δû1‖L2(Rn)

≤ ‖(e−iξ·y − 1)〈ξ〉−δ‖L∞(Rn)‖〈ξ〉sû1‖L2(Rn),

combined with the observation that

|(e−iξ·y − 1)〈ξ〉−δ| ≤
{

2N−δ if 〈ξ〉 ≥ N,
|y · ξ| if 〈ξ〉 ≤ N.

More generally, a similar argument with an additional spatial cut-off shows that C∞c (Rn)
is dense in Z−s(Rn) ∩ 〈x〉−δZ−s+δ(Rn).

We do not know whether C∞c (Rn) (or L∞(Rn)) is dense in Z−s(Rn) without the
additional regularity and decay assumptions imposed above.

2.3. Weak solutions. We have the following extension of [GSU16, Lemma 2.3] to low
regularity potentials:

Lemma 2.6. Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let q ∈ Z−s0 (Rn).
Define the bilinear form

Bq(u, v) = ((−∆)s/2u, (−∆)s/2v)Rn + (mq(u), v)Rn , u, v ∈ Hs(Rn).

(a) There is a countable set Σ = {λj}∞j=1 ⊂ R, λ1 ≤ λ2 ≤ · · · → ∞, with the following

property: if λ ∈ R\Σ, then for any F ∈ (H̃s(Ω))∗ and f ∈ Hs(Rn) there is a unique
u ∈ Hs(Rn) satisfying

Bq(u,w)− λ(u,w)Rn = F (w) for w ∈ H̃s(Ω), u− f ∈ H̃s(Ω).

One has the norm estimate

‖u‖Hs(Rn) ≤ C(‖F‖
(H̃s(Ω))∗ + ‖f‖Hs(Rn)).
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(b) The function u in (a) is also the unique u ∈ Hs(Rn) satisfying

((−∆)s + q − λ)u|Ω = F in the sense of distributions in Ω

and u− f ∈ H̃s(Ω).
(c) One has 0 /∈ Σ if (1.1) holds. If q ≥ 0, then one has Σ ⊂ (0,∞) and (1.1) always

holds.

Proof. By considering the function v = u− f we may without loss of generality assume
that f = 0. For any ε > 0 we may write q = qs+qr where qs ∈ C∞c (Rn) and ‖qr‖Z−s(Rn) <
ε. Thus

|(q, uv)Rn | ≤ ‖qs‖L∞(Rn)‖u‖L2(Rn)‖v‖L2(Rn) + ε‖u‖Hs(Rn)‖v‖Hs(Rn), u, v ∈ H̃s(Ω).

The Hardy-Littlewood-Sobolev inequality also gives

‖u‖Hs(Rn) ≤ C‖(−∆)s/2u‖L2(Rn), u ∈ H̃s(Ω).

Choosing ε > 0 small enough, this gives the coercivity estimate

Bq(u, u) ≥ c‖(−∆)s/2u‖2L2(Rn) − C‖u‖
2
L2(Rn), u ∈ H̃s(Ω).

The proof is now completed as in [GSU16]. To prove (b) we need to show that for any
u ∈ Hs(Rn), one has

(qu|Ω, ϕ|Ω)Ω = 0 for ϕ ∈ C∞c (Ω) =⇒ (qu, ϕ)Rn = 0 for ϕ ∈ C∞c (Ω).

This follows by the definition of the restriction of distributions. �

Consider the abstract trace space

X = Hs(Rn)/H̃s(Ω).

(One has X = Hs(Ωe) if Ω has Lipschitz boundary [CHM17].) For simplicity, we will
write f instead of [f ] for elements of X when f ∈ Hs(Rn). Denote by Pq the Poisson
operator

(2.2) Pq : X → Hs(Rn), f 7→ uf ,

where uf ∈ Hs(Rn) is the unique solution of ((−∆)s+q)u = 0 in Ω with uf−f ∈ H̃s(Ω).
We may now define the DN map by

Λq : X → X∗, (Λqf, g) = Bq(uf , g) for f, g ∈ X,
where uf = Pqf and where, with slight abuse of notation, we have identified elements in
Hs(Rn) with the elements of the quotient space. With the same proofs as in [GSU16], Λq
is a bounded symmetric linear operator, and one has the following extension of [GSU16,
Lemma 2.5] to singular potentials.

Lemma 2.7. Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and assume that
q1, q2 ∈ Z−s0 (Rn) satisfy (1.1). For any f1, f2 ∈ X one has

((Λq1 − Λq2)f1, f2) = (mq1−q2(u1), u2)Rn ,

where uj ∈ Hs(Rn) solves ((−∆)s + qj)uj = 0 in Ω with uj − fj ∈ H̃s(Ω).

We conclude this section with the proof of the auxiliary result.
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Proof of Lemma 2.3. Using a partition of unity, the function e+d(x)a can be decomposed
as the sum of a C∞c (Ω) function and finitely many functions which, after smooth changes
of coordinates, are of the form

u(x′, xn) = ϕ(x′)κ(xn)(xan)+

where ϕ ∈ C∞c (Rn−1), κ ∈ C∞c (R) and

(xan)+ =

{
xan, xn > 0,

0, xn < 0.

The regularity of e+d(x)a is determined by the regularity of such functions u.
Let (ψj(ξ))

∞
j=0 be a standard Littlewood-Paley partition of unity in Rn, so that

supp(ψ0) ⊂ {|ξ| . 1}, and ψj(ξ) = ψ(ξ/2j) satisfies supp(ψj) ⊂ {|ξ| ∼ 2j} for j ≥ 1.
Since u ∈ L1(Rn), one has

ψ0(D)u = F−1{ψ0} ∗ u ∈ Lp(Rn), 1 ≤ p ≤ ∞.

If j ≥ 1, we may enclose the dyadic annulus {|ξ| ∼ 2j} in a corresponding rectangular
region and write

ψj(D)u = F−1{ψj(ξ)
[
χ1(|ξ′|/2j)χ0(ξn/2

j) + χ0(|ξ′|/2j)χ1(ξn/2
j)

+ χ1(|ξ′|/2j)χ1(ξn/2
j)
]
û(ξ)}

where χj ∈ C∞c (R) satisfy supp(χ1) ⊂ {c ≤ |t| ≤ C} and supp(χ0) ⊂ {|t| ≤ c′} for
suitable c, c′, C > 0. It follows that

(2.3) ‖ψj(D)u‖Lp . ‖χ1(|D′|/2j)χ0(Dn/2
j)u‖Lp

+ ‖χ1(Dn/2
j)(χ0 + χ1)(|D′|/2j)u‖Lp .

Recall that u(x′, xn) = ϕ(x′)κ(xn)(xan)+. Thus

‖χ1(|D′|/2j)χ0(Dn/2
j)u‖Lp = ‖χ1(|D′|/2j)ϕ‖Lp(Rn−1)‖χ0(Dn/2

j)(κ(xan)+)‖Lp(R).

To estimate the first term on the right hand side of (2.3), for any γ > n/p one has

‖χ1(|D′|/2j)ϕ‖Lp . ‖〈x′〉γχ1(|D′|/2j)ϕ‖L∞

. ‖〈D′〉γ [χ1(ξ′/2j)ϕ̂(ξ′)]‖L1 .

Since ϕ̂ is a fixed Schwartz function, for any N > 0 there is CN > 0 so that the last
expression is . CN2−jN . Moreover, ‖χ0(Dn/2

j)(κ(xan)+)‖Lp(R) . 1 since κ(xan)+ ∈
L1(R). Thus for any N > 0 there is CN > 0 such that

‖χ1(|D′|/2j)χ0(Dn/2
j)u‖Lp ≤ CN2−jN .

Similarly, the second term on the right hand side of (2.3) satisfies

‖χ1(Dn/2
j)(χ0 + χ1)(|D′|/2j)u‖Lp

= ‖χ1(Dn/2
j)(κ(xan)+)‖Lp(R)‖(χ0 + χ1)(|D′|/2j)ϕ‖Lp(Rn−1).
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The Lp(Rn−1) norm is . 1, and

χ1(Dn/2
j)(κ(xan)+) =

∫ ∞
−∞

2jF−1{χ1}(2j(xn − yn))κ(yn)(yan)+ dyn

= 2−ja
∫ ∞
−∞

F−1{χ1}(2jxn − yn)κ(2−jyn)(yan)+ dyn

= 2−jah(2jxn)

where ‖h‖Lp(R) . 1. Collecting these facts yields ‖ψj(D)u‖Lp . 2
−j(a+ 1

p
)

for j ≥ 1,

showing that u ∈ Ba+1/p
p∞ as required. �

3. Controllability and the Quantitative Unique Continuation Property

In this section we derive a one-to-one correspondence between the controllability prop-
erties of Theorem 1.4 and the quantitative unique continuation result of Theorem 1.3.
First, in Section 3.1, we present the singular value decomposition associated with the
Poisson operator. Then we explain the relation between controllability and quantitative
unique continuation in Section 3.2 (c.f. Lemma 3.3).

3.1. Singular value decomposition for the Poisson operator. We begin our dis-
cussion of the controllability result of Theorem 1.4 by relating it to the singular value
decomposition of the Poisson operator from (1.2). To this end, in the sequel we make
the following assumptions on the underlying domains:

Assumption 3.1. We assume that Ω ⊂ Rn, n ≥ 1, is an open bounded Lipschitz set and
that W ⊂ Ωe is an open Lipschitz set with Ω∩W = ∅. We denote by j : Hs(Ω)→ L2(Ω)
the inclusion map.

Relying on these assumptions, we derive the singular value decomposition for the
Poisson operator.

Lemma 3.2. Suppose that Assumption 3.1 holds and that s ∈ (0, 1). Let q ∈ Z−s0 (Rn).
The operator

A = jrΩPq : Hs
W
→ L2(Ω)(3.1)

is a compact linear operator between Hilbert spaces. It is injective and has dense range.
If (σj)

∞
j=1 are the singular values of A with σ1 ≥ σ2 ≥ . . . → 0, then each σj is positive

and there are orthonormal bases {ϕj} of Hs
W

and {wj} of L2(Ω) so that

Aϕj = σjwj .

The operator

Rl : L2(Ω)→ Hs
W
, Rlv =

l∑
j=1

1

σj
(v, wj)L2(Ω)ϕj

has the property that fl = Rlv satisfies

‖Pqfl|Ω − v‖L2(Ω) → 0 as l→∞
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and

‖fl‖Hs(W ) ≤
1

σl
‖v‖L2(Ω).(3.2)

Proof. The proof of this relies on the good mapping properties of A combined with the
density of

R := {rΩPqf : f ∈ C∞c (W )}

in L2(Ω) (c.f. Lemma 8.1 or [GSU16, Lemma 5.1]). The last statement implies that
A has dense range. Moreover, A is compact by compact Sobolev embedding and by
Lemma 2.6. It is injective, since if Af = 0, then uf = Pqf satisfies uf |Ω = 0 and
((−∆)s+ q)uf = 0 in Ω, thus also (−∆)suf |Ω = 0, and uf ≡ 0 by [GSU16, Theorem 1.2]
so f ≡ 0.

Let A∗ be the Hilbert space adjoint of A. Then A∗A is a compact, self-adjoint, positive
definite operator on Hs

W
. By the spectral theorem there exist positive numbers (µj)

∞
j=1

with µ1 ≥ µ2 ≥ . . .→ 0 and an orthonormal basis {ϕj}∞j=1 of Hs
W

with A∗Aϕj = µjϕj .

Write σj =
√
µj and define wj = 1

σj
Aϕj . Then {wj}∞j=1 is an orthonormal set in L2(Ω).

It is also complete, since if v ∈ L2(Ω) satisfies (v, wj)L2(Ω) = 0 for all j, then

(v, rΩPqf)L2(Ω) = 0

first for each f = ϕj , and then for any f ∈ Hs
W

by density. Thus v is orthogonal to the

range of A, and since this range is dense in L2(Ω) one has v ≡ 0.
If fl = Rlv, note that

‖Pqfl|Ω − v‖2L2(Ω) = ‖ARlv − v‖2L2(Ω) =

∞∑
j=l+1

|(v, wj)L2(Ω)|2 → 0

as l→∞. Also,

‖Rlv‖2Hs(W ) =
l∑

j=1

1

σ2
j

|(v, wj)L2(Ω)|2 ≤
1

σ2
l

‖v‖2L2(Ω).(3.3)

�

In order to infer the desired controllability result of Theorem 1.4, it would thus be
enough to estimate 1/σl, where σl are the singular values of A. Instead of doing this
directly, in the sequel, we will reduce the statement of Theorem 1.4 to a quantitative
unique continuation result for a suitable dual problem (c.f. Lemma 3.3).

3.2. Quantitative unique continuation properties and controllability. In this
section, we show an equivalence between quantitative controllability (as in Theorem
1.4) and quantitative unique continuation, for which we follow [Ro95], [Ph04]. As a
consequence, we infer that Theorem 1.4 directly follows from the result of Theorem
1.3. In particular, we will mainly concentrate on proving Theorem 1.3 in the following
Sections 4–7.

Lemma 3.3. Suppose that Assumption 3.1 holds, that s ∈ (0, 1) and that q ∈ Z−s0 (Rn).
Let A : Hs

W
→ L2(Ω) be as in (3.1) and let (σj , ϕj , wj) ∈ R+ × Hs

W
× L2(Ω) be the

singular value decomposition of A.
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(a) If ω is a nondecreasing function which is continuous at zero with ω(0) = 0 and
if

‖v‖H−s(Ω) ≤ ω

(
‖A∗v‖Hs

W

‖v‖L2(Ω)

)
‖v‖L2(Ω), v ∈ L2(Ω),

then for any ε > 0 and for any v ∈ Hs
Ω

there is fε ∈ Hs
W

so that

‖Afε − v‖L2(Ω) ≤ ε‖v‖Hs
Ω
, ‖fε‖Hs

W
≤M(ε)‖v‖L2(Ω),

where M(ε) = inf { 1
α ; ω(α) ≤ ε}.

(b) If for any ε > 0 and for any v ∈ Hs
Ω

there is fε ∈ Hs
W

so that

‖Afε − v‖L2(Ω) ≤ ε‖v‖Hs
Ω
, ‖fε‖Hs

W
≤M(ε)‖v‖L2(Ω),

then one has the inequality

‖v‖H−s(Ω) ≤ η

(
‖A∗v‖Hs

W

‖v‖L2(Ω)

)
‖v‖L2(Ω), v ∈ L2(Ω),

where η(t) = infε>0 (ε+M(ε)t).

Proof. (a) Let ε > 0, v ∈ Hs
Ω

, and fix α > 0. We decompose

v = vα + rα, vα =
∑
σj>α

(v, wj)L2(Ω)wj .

One has the simple estimate ‖vα‖L2(Ω) ≤ ‖v‖L2(Ω), and the assumption implies that

‖rα‖H−s(Ω) ≤ ω

(
‖A∗rα‖Hs

W

‖rα‖L2(Ω)

)
‖rα‖L2(Ω)

= ω

(
‖
∑

σj≤α(v, wj)L2(Ω)σjϕj‖Hs
W

‖rα‖L2(Ω)

)
‖rα‖L2(Ω).

By orthogonality, ‖
∑

σj≤α(v, wj)L2(Ω)σjϕj‖2Hs
W
≤ α2‖rα‖2L2(Ω), which gives that

‖rα‖H−s(Ω) ≤ ω(α)‖rα‖L2(Ω).

We will choose fε = Rαv for a suitable choice of α, where Rαv is defined by

Rαv =
∑
σj>α

1

σj
(v, wj)L2(Ω)ϕj .

Then

‖ARαv − v‖2L2 =
∑
σj≤α
|(v, wj)L2(Ω)|2 = (v, rα)L2(Ω) ≤ ‖v‖Hs

Ω
‖rα‖H−s(Ω).

Using the above estimate for ‖rα‖H−s(Ω) gives

‖ARαv − v‖2L2 ≤ ω(α)‖v‖Hs
Ω
‖rα‖L2 .

However, one also has ‖rα‖L2 = ‖ARαv − v‖L2 , which yields

‖ARαv − v‖L2 ≤ ω(α)‖v‖Hs
Ω
.
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On the other hand,

‖Rαv‖Hs
W

=

∑
σj>α

1

σ2
j

|(v, wj)L2(Ω)|2
1/2

≤ 1

α
‖v‖L2 .

The result follows.
(b) Let v ∈ L2(Ω), and observe that the duality assertion H−s(Ω) = (Hs

Ω
)∗ implies

that
‖v‖H−s(Ω) = sup

‖ψ‖Hs
Ω

=1
(v, ψ)L2(Ω).

Let ψ ∈ Hs
Ω

satisfy ‖ψ‖Hs
Ω

= 1, let ε > 0, and use the assumption to find fε ∈ Hs
W

satisfying
‖Afε − ψ‖L2(Ω) ≤ ε, ‖fε‖Hs

W
≤M(ε).

Then

(v, ψ)L2(Ω) = (v, ψ −Afε +Afε)L2(Ω) = (v, ψ −Afε)L2(Ω) + (A∗v, fε)Hs
W

and consequently

‖v‖H−s(Ω) ≤

(
ε+M(ε)

‖A∗v‖Hs
W

‖v‖L2(Ω)

)
‖v‖L2(Ω).

The result follows since ε > 0 was arbitrary. �

Remark 3.4. Note that in part (a), if

ω(t) = C|log t|−σ, t small,

then one can take M(ε) = eC̃/ε
µ

with C̃ = C1/σ and µ = 1/σ. Similarly, if in part (b)

one has M(ε) = eC̃/ε
µ
, then one has

η(t) ≤ 2
1+ 1

µ C̃1/µ|log (C̃µt)|−1/µ, t small.

For t > 1/2, we can smoothly and monotonously extend these moduli of continuity.

Remark 3.5. It is easy to show (see the proof of Lemma 8.1) that the (Banach space)
adjoint A′ of the operator A from Lemma 3.2 is given by the mapping

L2(Ω) 3 v 7→ −(−∆)sw|W ∈ H−s(W ),

where v, w are related by

((−∆)s + q)w = v in Ω,

w = 0 in Ωe.
(3.4)

By virtue of Lemma 2.6, this problem is well-posed for our class of potentials q ∈
Z−s0 (Rn). As general functional analysis yields that the diagram

L2(Ω)
A′ //

Id
��

H−s(W )

RHs
W

��

L2(Ω)
A∗ // Hs

W
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is commutative, we deduce that A∗ = RHs
W
A′, where RHs

W
denotes the Riesz isomor-

phism between a Hilbert space and its dual. Due to the equivalence between controlla-
bility and quantitative unique continuation, which was established in Lemma 3.3, in the
sequel we will thus seek to prove the estimate

‖v‖H−s(Ω) ≤ C
1

log

(
C

‖v‖L2(Ω)

‖(−∆)sw‖H−s(W )

)µ̃ ‖v‖L2(Ω).(3.5)

for functions v, w related through (3.4).

3.3. Construction of approximating sequences. As a final remark on the connec-
tion between controllability and approximation, we describe an explicit Tikhonov al-
gorithm for computing a possible control and approximation for a given function v,
assuming that the operator A is known. This can for instance be used in the setting of
[DSV17], where q = 0.

Lemma 3.6 (Tikhonov regularization). Let s ∈ (0, 1), n ≥ 1 and Ω,W ⊂ Rn be open
Lipschitz sets with Ω∩W = ∅. Assume that v ∈ L2(Ω), that q ∈ Z−s0 (Rn) is known and
that A is the operator from Lemma 3.2. Then for each α ∈ (0,∞) there exists a unique
minimizer fα ∈ Hs

W
of the functional

Eα,v(f) = ‖Af − v‖2L2(Ω) + α‖f‖2Hs
W
.

Moreover,

‖Afα − v‖L2(Ω) → 0 as α→ 0.

Proof. The existence of a unique minimizer follows from simple functional analysis (c.f.
Theorem 4.14 in [CK98]). The convergence result is a direct consequence of Theorem
1.4 and follows by choosing α ∈ (0,∞) sufficiently small. �

Remark 3.7. We observe that by considering variations of the functional Eα,v(f) around
the unique minimizer fα, we infer that fα is characterized as the solution of the Euler-
Lagrange equation

(A∗A+ α Id)fα = A∗v.

Remark 3.8. An alternative construction algorithm is already provided by Lemma 3.3:
Using the notation from there and defining fα := Rαv implies

‖Afα − v‖L2(Ω) ≤ ω(α)‖v‖Hs
Ω
,

which is the desired approximation result. For a given operator A, the function Rαv
can be computed explicitly, but this may be computationally more expensive than an
application of the Tikhonov algorithm from Lemma 3.6.

4. The Caffarelli-Silvestre extension

Building on the relation between controllability and quantitative unique continuation,
which was explained in the last section, we wish to to deduce quantitative unique con-
tinuation properties for solutions to (3.4). Due to its nonlocal character, the equation
(3.4) cannot directly be approached by many tools, which are commonly used to deduce
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unique continuation. Hence, we first “localize” the problem by considering the associated
Caffarelli-Silvestre extension (c.f. [CS07]).

In this section we collect a number of auxiliary results related to the Caffarelli-Silvestre
extension, including regularity results, trace estimates, and Caccioppoli’s and Hardy’s
inequalities. These will be used in Section 5 to study propagation of smallness for solu-
tions to the Caffarelli-Silvestre extension problem. By virtue of the local character of the
Caffarelli-Silvestre extension, it will be possible to apply techniques for local operators,
which yield precise quantitative unique continuation properties (c.f. Theorem 5.1). In
Section 7 these properties of the Caffarelli-Silvestre extension are then transferred to the
nonlocal equation (3.4), where we also prove Theorems 1.3 and 1.4.

4.1. Regularity results. We first discuss some regularity results for the Caffarelli-
Silvestre extension. Some of these results are contained in [CS07], [CS14], but since we
need slightly different norms we will give self-contained proofs.

In the sequel, we will use the notation x = (x′, xn+1).

Lemma 4.1. Let n ≥ 1 and 0 < s < 1. There is a map Es : ∪α∈RHα(Rn)→ C∞(Rn+1
+ )

(the Caffarelli-Silvestre extension) so that when f ∈ Hγ(Rn) for some γ ∈ R, the func-
tion u = Esf satisfies

∇ · x1−2s
n+1 ∇u = 0 in Rn+1

+ ,

u( · , xn+1)→ f in Hγ(Rn) as xn+1 → 0.

The function u is given by

u( · , xn+1) = Pxn+1 ∗ f, Pxn+1(x′) = pn,s
x2s
n+1

(|x′|2 + x2
n+1)

n+2s
2

where pn,s > 0 is chosen so that
∫
P1(x′) dx′ = 1. Alternatively,

û(ξ, xn+1) = φ(|ξ|xn+1)f̂(ξ)

where ˆ denotes Fourier transform in x′, and P̂1(ξ) = φ(|ξ|). One also has the following
duality property: if f ∈ Hγ(Rn) and u = Esf , then

x1−2s
n+1 ∂n+1u = −asE1−s((−∆)sf)

where as = 21−2s Γ(1−s)
Γ(s) . Consequently

x1−2s
n+1 ∂n+1u( · , xn+1)→ −as(−∆)sf in Hγ−2s(Rn) as xn+1 → 0.

Proof. These results are contained in [CS07], [CS14] in the case where γ = s. We give
the proof for general γ. Formally the equation for u may be written as

∂2
n+1u+

1− 2s

xn+1
∂n+1u+ ∆x′u = 0 in {xn+1 > 0}, u( · , 0) = f.

Fourier transforming in x′ gives the equation

(∂2
n+1 +

1− 2s

xn+1
∂n+1 − |ξ|2)û(ξ, xn+1) = 0 in {xn+1 > 0}, û( ξ, 0) = f̂(ξ).
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The solution is given by û(ξ, xn+1) = φ(|ξ|xn+1)f̂(ξ), where φ(t) = φs(t) solves

φ′′(t) +
1− 2s

t
φ′(t)− φ(t) = 0, φ(0) = 1, lim

t→∞
φ(t) = 0.

We next discuss some properties of φ(t). Writing φ(t) = tsχ(t) gives the equation
t2χ′′(t) + tχ′(t)− (s2 + t2)χ(t) = 0, which implies that φ(t) = ctsKs(t), where Ks is the
modified Bessel function of second kind. One has (see [AS72, Sections 9.6 and 9.7] and
[Ol10, Section 10.25])

d

dt
(tsKs(t)) = −tsKs−1(t) = −tsK1−s(t),

Ks(t) ∼ 2s−1Γ(s)t−s as t→ 0+ if s > 0,

d

dt
(tsKs(t)) ∼ −2−sΓ(1− s)t2s−1 as t→ 0+ if s > 0,

Ks(t) ∼
√
π

2t
e−t, K ′s(t) ∼ −

√
π

2t
e−t as t→∞.

Thus c = 21−s

Γ(s) . For later purposes we observe that g(t) := t1−2sφ′(t) satisfies

lim
t→0

g(t) = −21−2sΓ(1− s)
Γ(s)

= −as,

and that g(t) solves the equation

g′′ − 1− 2s

t
g′ − g = 0, g(0) = −as, lim

t→∞
g(t) = 0.

The function φ1−s solves the same ODE as g, and thus it follows that

(4.1) t1−2sφ′s(t) = −asφ1−s(t).

The map Es may now be defined as

Esf( · , xn+1) = F−1{φ(xn+1|ξ|)f̂(ξ)}.

Then u = Esf solves ∇ · x1−2s
n+1 ∇u = 0 in Rn+1

+ by construction, and u( · , ε) → f in Hγ

as ε → 0 (first choose R so that ‖〈ξ〉γ f̂‖L2({|ξ|>R}) is small, and then choose ε so that
‖φ(ε|ξ|)− 1‖L∞({|ξ|≤R}) is small). One also has

u( · , xn+1) = Pxn+1 ∗ f

where Pt(x) = t−nP1(x/t) and P1 = F−1{φ(|ξ|)}. The fact that the Fourier transform

of (|x′|2 + 1)−
n+2s

2 is cφ(|ξ|) follows from a direct computation and [AS72, 9.6.25]. This
shows the formula for P1.

Finally, to show the duality statement, note that the Fourier representation for u gives

x1−2s
n+1 ∂n+1u( · , xn+1) = F−1{g(xn+1|ξ|)|ξ|2sf̂(ξ)}

where g(t) := t1−2sφ′(t). By (4.1) one has g(t) = −asφ1−s(t). This implies that
x1−2s
n+1 ∂n+1u = −asE1−s((−∆)sf) and gives the stated limit as xn+1 → 0. �
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The next result shows that the norm ‖x
1−2s

2
n+1 ∇u‖L2(Rn+1

+ ) is finite for the Caffarelli-

Silvestre extension of an Hs(Rn) function, and if f is more regular then one has improved
decay near xn+1 = 0. See also [LS16, Proposition 10.2] and [BC17] for similar estimates
for the Caffarelli-Silvestre harmonic extension in a larger class of function spaces.

Lemma 4.2. Let u be the Caffarelli-Silvestre extension of f . For any N ≥ 0,

‖x
1−2s

2
−δ

n+1 |D′|Nu‖L2(Rn+1
+ ) = cs,δ‖f‖Ḣs+δ+N−1(Rn), δ < 1− s,

‖x
1−2s

2
−δ

n+1 |D′|N∇u‖L2(Rn+1
+ ) = ds,δ‖f‖Ḣs+δ+N (Rn), δ < s.

If additionally C1 > 0 is fixed and s+ δ +N ≥ 0, one has the estimates

‖x
1−2s

2
−δ

n+1 |D′|Nu‖L2(Rn×(0,C1)) ≤ Cs,δ,C1‖f‖Hs+δ+N (Rn), δ < 1− s,

‖x
1−2s

2
−δ

n+1 |D′|N∇u‖L2(Rn+1
+ ) ≤ Cs,δ‖f‖Hs+δ+N (Rn), δ < s.

Proof. By Lemma 4.1 û(ξ, xn+1) = φs(|ξ|xn+1)f̂(ξ), and the Plancherel identity gives∫
Rn+1

+

x1−2s−2δ
n+1 ||D′|Nu|2 dx

= (2π)−n
∫ ∞

0

∫
Rn
x1−2s−2δ
n+1 |ξ|2Nφs(|ξ|xn+1)2|f̂(ξ)|2 dξ dxn+1.

Replacing xn+1 by xn+1/|ξ| and computing the xn+1-integral shows that this is equal to

cs,δ(2π)−n
∫
Rn
|ξ|2(s+δ+N−1)|f̂(ξ)|2 dξ = cs,δ‖f‖2Ḣs+δ+N−1(Rn)

,

where cs,δ =
∞∫
0

z1−2s−2δφ2(z) dz, which is finite if δ < 1− s.

For the second statement, we note that x1−2s
n+1 ∂n+1u = −asE1−s((−∆)sf). The first

part gives for any γ < 1− s

‖x
1−2s

2
−γ

n+1 |D′|Nx1−2s
n+1 ∂n+1u‖L2(Rn+1

+ ) = ds,γ‖(−∆)sf‖2
Ḣs+γ+N−1(Rn)

.

Writing γ = δ + 1− 2s, where δ < s, gives the second statement.
The fourth estimate in the lemma follows from the second statement. For the third

estimate, we compute∫
Rn

∫ C1

0
x1−2s−2δ
n+1 ||D′|Nu|2 dx

= (2π)−n
∫
Rn

∫ C1

0
x1−2s−2δ
n+1 |ξ|2Nφs(|ξ|xn+1)2|f̂(ξ)|2 dxn+1 dξ

= (2π)−n

[∫
|ξ|≤1

+

∫
|ξ|>1

]∫ C1|ξ|

0
x1−2s−2δ
n+1 |ξ|2(s+δ+N−1)φs(xn+1)2|f̂(ξ)|2 dξ dxn+1



THE FRACTIONAL CALDERÓN PROBLEM: LOW REGULARITY AND STABILITY 21

If |ξ| ≤ 1, we have∫ C1|ξ|

0
x1−2s−2δ
n+1 φs(xn+1)2 dxn+1 ≤ Cs

∫ C1|ξ|

0
x1−2s−2δ
n+1 dxn+1 = Cs,δ,C1 |ξ|2(1−s−δ)

whenever δ < 1− s. If |ξ| ≥ 1, we have (also using that δ < 1− s)∫ C1|ξ|

0
x1−2s−2δ
n+1 φs(xn+1)2 dxn+1 ≤

∫ ∞
0

x1−2s−2δ
n+1 φs(xn+1)2 dxn+1 = Cs,δ.

It follows that∫
Rn

∫ C1

0
x1−2s−2δ
n+1 ||D′|Nu|2 dx

≤ C

[∫
|ξ|≤1
|ξ|2N |f̂(ξ)|2 dξ +

∫
|ξ|>1
|ξ|2(s+δ+N−1)|f̂(ξ)|2 dξ

]
.

The last expression is ≤ C‖f‖Hs+δ+N (Rn). �

Next we give localized higher regularity results. Related regularity results in Hölder
norms may be found in [KRS16, Proposition 8.1].

Lemma 4.3. Let f ∈ Hγ(Rn) for some γ ∈ R, and assume that f |B′R ∈ C
∞(B′R) for

some R > 0 . Let u be the Caffarelli-Silvestre extension of f , let r < R, and let C1 > 0.
Then for any δ < min{s, 1− s} and N ≥ 0,

‖x
1−2s

2
−δ

n+1 (∇′)Nu‖L2(B′r×(0,C1)) + ‖x
1−2s

2
−δ

n+1 (∇′)N∇u‖L2(B′r×(0,C1)) <∞.

If v = x1−2s
n+1 ∂n+1u, then one also has

‖x
2s−1

2
−δ

n+1 (∇′)Nv‖L2(B′r×(0,C1)) + ‖x
2s−1

2
−δ

n+1 (∇′)N∇v‖L2(B′r×(0,C1)) <∞.

Moreover, as xn+1 → 0,

u( · , xn+1)|B′r → f |B′r in C∞(B′r),

x1−2s
n+1 ∂n+1u( · , xn+1)|B′r → −as(−∆)sf |B′r in C∞(B′r).

Proof. Fix η, ψ ∈ C∞c (B′R) so that η = 1 near B
′
r and ψ = 1 near supp(η). Then

u = Es(ψf)︸ ︷︷ ︸
:=u1

+Es((1− ψ)f)︸ ︷︷ ︸
:=u2

.

Since ψf ∈ Hβ(Rn) and (−∆)s(ψf) ∈ Hβ(Rn) for all β ∈ R, Lemmas 4.1–4.2 show that
the claims in this lemma hold when u is replaced by u1 and f by ψf . For u2, note that

(ηu2)(x′, ε) =

∫
Rn
η(x′)Pε(x

′ − y′)(1− ψ)(y′)f(y′) dy′︸ ︷︷ ︸
:=Tεf(x′)

.
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The integral kernel tε(x
′, y′) of Tε is supported in {|x′ − y′| ≥ a} for some fixed a > 0.

Now for any ε > 0∫
|z|>a
|∂αx′Pε(z)| dz =

∫
|z|>a

ε−n−|α||(∂αx′P1)(z/ε)| dz =

∫
|y|>a/ε

ε−|α||(∂αx′P1)(y)| dy

≤ Cn,s,α
∫
|y|>a/ε

ε−|α||y|−n−2s−|α| dy ≤ Cε2s.

An integration by parts together with Schur’s lemma show that for any g ∈ L2(Rn) and
N ≥ 0, one has ‖〈D′〉2NTε(〈D′〉2Ng)‖L2(Rn) ≤ CNε2s‖g‖L2(Rn). Thus

‖Tεg‖H2N ≤ CNε2s‖g‖H−2N .

It follows that

(ηu2)( · , xn+1)→ 0 in C∞(Rn) as xn+1 → 0

and

‖x
1−2s

2
−δ

n+1 (∇′)Nu2‖2L2(B′r×(0,C1)) ≤ ‖x
1−2s

2
−δ

n+1 (∇′)N (ηu2)‖2L2(Rn×(0,C1))

≤
∫ C1

0
x1−2s−2δ
n+1 ‖Txn+1f‖2HN dxn+1 ≤ C‖f‖2H−N

∫ C1

0
x1+2s−2δ
n+1 dxn+1.

The last integral is finite if δ < s+ 1.
Finally, we note that the duality statement in Lemma 4.1 implies

x1−2s
n+1 ∂n+1u2 = −asE1−s((−∆)s((1− ψ)f))

= Es̄(−asη(−∆)s((1− ψ)f))︸ ︷︷ ︸
:=ũ1

+Es̄(−as(1− η)(−∆)s((1− ψ)f))︸ ︷︷ ︸
:=ũ2

where s̄ = 1 − s. Noting that η(−∆)s(1 − ψ)f ∈ C∞c (Rn), it is possible to deal with
ũ1 and ũ2 by the same arguments as for u1 and u2, respectively. The rest of the claims
follow. �

4.2. Trace estimates. We move on to trace estimates that are valid for general func-
tions in the space H1(Rn+1

+ , x1−2s
n+1 ), defined via the norm

‖u‖H1(Rn+1
+ ,x1−2s

n+1 ) := ‖x
1−2s

2
n+1 u‖L2(Rn+1

+ ) + ‖x
1−2s

2
n+1 ∇u‖L2(Rn+1

+ ).

Lemma 4.4. Let n ≥ 1 and 0 < s < 1. There is a bounded surjective linear map

T : H1(Rn+1
+ , x1−2s

n+1 )→ Hs(Rn)

so that u( · , xn+1)→ Tu in L2(Rn) as xn+1 → 0.

Moreover, let Ω ⊂⊂ Ω′ ⊂ Rn be bounded open sets, and let η ∈ C∞c (Rn+1
+ ) satisfy

η = 1 near Ω×{0} and supp(η) ⊂ Ω′× [0, 1). If u ∈ H1(Rn+1
+ , x1−2s

n+1 ) and Tu = f , then

‖f‖Hs(Ω) ≤ ‖ηf‖Hs(Rn) ≤ Cn,s,Ω,Ω′(‖x
1−2s

2
n+1 u‖L2(Ω′×[0,1]) + ‖x

1−2s
2

n+1 ∇u‖L2(Ω′×[0,1])).
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Proof. The first statement can be extracted from [LM72, Sections 10.1 and 10.2], see
also [Ne93]. For the second statement, by the definition of Hs(Ω),

‖f‖Hs(Ω) ≤ ‖ηf‖Hs(Rn) = ‖T (ηu)‖Hs(Rn) ≤ Cn,s‖ηu‖H1(Rn+1
+ ,x1−2s

n+1 )

≤ Cn,s,η(‖x
1−2s

2
n+1 u‖L2(Ω′×[0,1]) + ‖x

1−2s
2

n+1 ∇u‖L2(Ω′×[0,1])). �

4.3. Inequalities. We will use the following Caccioppoli inequality frequently in the
sequel. It is stated in a standard form with respect to balls of radius r and 2r, but we
will also use straightforward modifications of this inequality to sets other than balls.

Lemma 4.5 (Caccioppoli). Let u ∈ H1(B+
2r, x

1−2s
n+1 dx) be a solution to

∇ · x1−2s
n+1 ∇u = 0 in B+

2r.

Then there exists a universal constant C > 1 such that

‖x
1−2s

2
n+1 ∇u‖

2
L2(B+

r )
≤ Cr−2‖x

1−2s
2

n+1 u‖
2
L2(B+

2r)

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u‖H−s(B′2r)‖u‖Hs(B′2r)

.

Proof. The estimate follows from integration by parts and the equation. Indeed, let
η : B+

2r → R be a smooth, positive, radial cut-off function such that η = 1 on B+
r ,

supp(η) ⊂ B+
2r, and |∇η| ≤ C/r. We note that the radial dependence of η in particular

implies that

lim
xn+1→0

x1−2s
n+1 ∂n+1(ηu) = η lim

xn+1→0
x1−2s
n+1 ∂n+1u.

Thus, inserting ϕ = η2u into the weak form of the equation, i.e.∫
Rn+1

+

x1−2s
n+1 ∇u · ∇ϕdx =

∫
Rn

ϕ(x′, 0) lim
xn+1→0

x1−2s
n+1 ∂n+1u(x′, xn+1) dx′

for ϕ ∈ H1
0 (B+

2r, x
1−2s
n+1 dx),

yields

∫
Rn+1

+

x1−2s
n+1 |∇u|

2η2 dx = −2

∫
Rn+1

+

x1−2s
n+1 ηu∇u · ∇η dx+

∫
Rn×{0}

η2u lim
xn+1→0

x1−2s
n+1 ∂n+1u dx

′.

(4.2)

We treat the bulk and the boundary terms separately: For the boundary integral, we

first use the duality between H−s(B′2r) and H̃s(B′2r) to estimate∫
Rn×{0}

η2u lim
xn+1→0

x1−2s
n+1 ∂n+1u dx

′ ≤ ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w‖H−s(B′2r)‖η

2w‖H̃s(B′2r)
.
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Next we use that for any ε > 0, there is a function W ∈ Hs(Rn) with W |B′2r = w and

‖W‖Hs(Rn) ≤ ‖w‖Hs(B′2r)
+ ε. Thus

‖η2w‖
H̃s(B′2r)

= ‖η2w‖Hs(Rn) = ‖η2W‖Hs(Rn) ≤ Cη‖W‖Hs(Rn)

≤ Cη(‖w‖Hs(B′2r)
+ ε).

(4.3)

Here we made use of the support condition supp(η) ∈ B′2r and the assumption that
w = W in B′2r in order to pass from w to W . Moreover we exploited that η2 is a
bounded multiplier from Hs(Rn) to Hs(Rn). Passing to the limit ε → 0 in (4.3) then
yields the bound∫

Rn×{0}

η2u lim
xn+1→0

x1−2s
n+1 ∂n+1u dx

′ ≤ C‖w‖Hs(B′2r)
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w‖H−s(B′2r).(4.4)

Estimating

−2

∫
Rn+1

+

x1−2s
n+1 ηu∇u · ∇η dx ≤

1

2
‖x

1−2s
2

n+1 η(∇u)‖2
L2(Rn+1

+ )
+ 2‖x

1−2s
2

n+1 u(∇η)‖2
L2(Rn+1

+ )
,(4.5)

absorbing the first term in (4.5) into the left hand side of (4.2), recalling the conditions
for η and combining (4.2), (4.5) and (4.4) thus concludes the argument. �

We will also use the following Hardy (or Hardy-Littlewood-Pólya) inequality.

Lemma 4.6 (Hardy). If α 6= 1/2 and if u vanishes for xn+1 large, then

‖x−αn+1u‖
2
L2(Rn+1

+ )
≤ 4

(2α− 1)2
‖x1−α

n+1∂n+1u‖2L2(Rn+1
+ )

+
2

2α− 1
lim
ε→0
‖x

1
2
−α

n+1 u‖
2
L2(Rn×{ε}).

Proof. Indeed, this follows from a direct integration by parts argument

‖x−αn+1u‖
2
L2(Rn+1

+ )
=

∫
∂n+1

[
x1−2α
n+1

1− 2α

]
u2

=
2

2α− 1

∫
x1−2α
n+1 u∂n+1u+

1

2α− 1
lim
ε→0

∫
{xn+1=ε}

x1−2α
n+1 u

2

≤ 1

2

4

(2α− 1)2
‖x1−α

n+1∂n+1u‖2L2(Rn+1
+ )

+
1

2
‖x−αn+1u‖

2
L2(Rn+1

+ )

+
1

2α− 1
lim
ε→0
‖x

1
2
−α

n+1 u‖
2
L2(Rn×{ε}).

Absorbing the second term on the right hand side into the left hand side and multiplying
by two yields the result. �

Last but not least, we state a weighted Poincaré inequality for functions with vanishing
trace on part of the boundary. We will use this in various places in the sequel.

Lemma 4.7 (Poincaré). Let n ≥ 1, let s ∈ (0, 1), and let U ⊂ Rn be open. Let u satisfy

‖x
1−2s

2
n+1 u‖L2(U×(0,1)) + ‖x

1−2s
2

n+1 ∇u‖L2(U×(0,1)) <∞,

lim
xn+1→0

‖u( · , xn+1)‖L2(U) = 0.
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There exists a constant Cs > 1 depending only on s such that

‖x
1−2s

2
n+1 u‖L2(U×(0,1)) ≤ Cs‖x

1−2s
2

n+1 ∇u‖L2(U×(0,1)).

Proof. The proof follows from an application of the fundamental theorem of calculus and
the vanishing trace assumption. More precisely, fix ε > 0, so that u ∈ H1(U × (ε, 1))
and the computation below can be justified by approximating with smooth functions.
We have for x = (x′, xn+1) ∈ U × (0, 1) that

u(x′, xn+1) = u(x′, ε) +

xn+1∫
ε

∂tu(x′, t) dt.

Hence, also∣∣∣∣x 1−2s
2

n+1 u(x)

∣∣∣∣ ≤ ∣∣∣∣x 1−2s
2

n+1 u(x′, ε)

∣∣∣∣+

∣∣∣∣∣∣x
1−2s

2
n+1

xn+1∫
ε

t
1−2s

2 t
2s−1

2 ∂tu(x′, t) dt

∣∣∣∣∣∣
≤
∣∣∣∣x 1−2s

2
n+1 u(x′, ε)

∣∣∣∣+ csx
1
2
n+1‖( · )

1−2s
2 ∂xn+1u(x′, · )‖L2((0,1)).

Taking the L2 norm over U × (0, 1) and taking the limit as ε → 0 (where we use the
vanishing trace assumption) therefore yields the desired estimate. �

5. Propagation of Smallness

5.1. Stability results. Motivated by the results of Section 3.2, we seek to study the
quantitative unique continuation properties of solutions w̃ to

∇ · x1−2s
n+1 ∇w̃ = 0 in Rn+1

+ ,

w̃ = w in Rn × {0},
(5.1)

where s ∈ (0, 1) and w ∈ Hs
Ω

is a solution to (3.4) on a bounded Lipschitz domain

Ω ⊂ Rn with an inhomogeneity v ∈ H−s(Ω) and a potential q ∈ Z−s0 (Rn). The equation
in (5.1) is degenerate elliptic. It is connected in a natural way to weighted Lebesgue and
Sobolev spaces, where the associated weight x1−2s

n+1 belongs to the Muckenhoupt class
A2. In particular, the theory of Fabes, Kenig, Serapioni and Jerison [FKS82], [FJK82]

applies to this equation. If convenient, for a set Ω̃ ⊂ Rn+1
+ we will in the sequel use

norms directly associated with this weight. Here the notation is defined by

‖w‖L2(Ω̃,x1−2s
n+1 dx) := ‖x

1−2s
2

n+1 w‖L2(Ω̃), ‖w‖Ḣ1(Ω̃,x1−2s
n+1 dx) := ‖x

1−2s
2

n+1 ∇w‖L2(Ω̃).

We recall that by Lemma 4.1

lim
xn+1→0

x1−2s
n+1 ∂n+1w̃ = −as(−∆)sw ∈ H−s(Rn).

In the sequel, we will always assume that W ⊂ Ωe is an open, bounded Lipschitz set
such that W ∩ Ω = ∅. If there is no danger of confusion, for notational convenience we
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will often identify W ⊂ Rn (or Ω ⊂ Rn) with the corresponding set W ×{0} ⊂ Rn×{0}
(or Ω× {0} ⊂ Rn × {0}). With this convention, we will also write

Ω̂ := {x ∈ Rn × {0} : dist(x,Ω) < r/2},

where r = dist(Ω,W ).
In the outlined set-up, we deduce a number of propagation of smallness results for the

Caffarelli-Silvestre extension (5.1) associated with a solution w of (3.4). Here our main
conclusion is a “local version” of (3.5).

Theorem 5.1 (Boundary logarithmic stability estimate). Let W ⊂ Ωe be an open,
bounded Lipschitz set such that W ∩ Ω = ∅. Suppose that s ∈ (0, 1) and that w̃ is a
solution of (5.1). Assume further that for some constant C1 > 1, one has

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(W ) ≤ η,

‖x
1−2s

2
n+1 w̃‖L2(Rn×[0,C1]) + ‖x

1−2s
2

n+1 ∇w̃‖L2(Rn+1
+ ) ≤ E.

(5.2)

Here we assume that E
η > 1. Then we have

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,1])

≤ CE 1

log
(
C E
η

)µ ,(5.3)

where the constants C > 1 and µ > 0 depend on n, s, C1, Ω, W .
If moreover, for some γ > 0

‖x
1−2s

2
−γ

n+1 ∇w̃‖L2(Rn+1
+ ) ≤ E,(5.4)

then we also have that

‖x
1−2s

2
n+1 ∇w̃‖L2(Ω̂×[0,1])

≤ CE 1

log
(
C E
η

)µ(5.5)

for some constants C > 1, µ > 0, which depend on n, s, C1, γ,Ω,W .

Remark 5.2. We remark that the assumption that E
η > 1 can be easily ensured and

hence does not pose restrictions in Theorem 5.1. Indeed, we have that with the notation
from (5.1)

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(W ) ≤ ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w̃‖H−s(Rn)

≤ Cn,s‖(−∆)sw‖H−s(Rn) ≤ Cn,s‖w‖Ḣs(Rn)

≤ Cn,s‖x
1−2s

2
n+1 ∇w̃‖L2(Rn+1

+ ),

where in the last step we used the trace estimates from Lemma 4.2. Thus, by potentially
replacing E by CE for a constant C ≥ 1 which only depends on n, s, we can always
suppose that E

η > 1. In the sequel, we will always assume that we have already reduced

to this set-up.
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Combined with trace estimates, c.f. Lemma 4.4, this yields the quantitative unique
continuation result of Theorem 1.3. We discuss the argument for this in Section 7.

In order to derive Theorem 5.1, we build on a number of auxiliary propagation of
smallness estimates: As key ingredients these include three balls inequalities (Proposi-
tions 5.3, 5.4) and bulk-boundary interpolation results (Proposition 5.6). We discuss
these individually in the sequel. The proofs of these results are postponed to Section
5.2. We note that for s = 1/2, these results follow from [ARRV09].

At boundary points x0 ∈ W × {0} we obtain the following boundary three balls
estimate, which allows us to pass information from a ball situated at the boundary to
an adjacent (possibly interior) ball. Here for a point x0 ∈ Rn × {0} we set B+

r (x0) :=

{x ∈ Rn+1
+ ; |x− x0| ≤ r} and B′r(x0) := B+

r (x0) ∩ (Rn × {0}).

Proposition 5.3 (Boundary three balls inequality). Let W,Ω be as above and s ∈ (0, 1).
Let x0 ∈W ×{0} ⊂ Rn×{0} and assume that r ∈ (0, 1) is such that B′4r(x0) ⊂W ×{0}.
Suppose that w̃ is a solution to (5.1). Then, there exist constants α ∈ (0, 1), C > 1,
which only depend on s, n, such that

‖x
1−2s

2
n+1 w̃‖L2(B+

2r(x0)) ≤ C‖x
1−2s

2
n+1 w̃‖

α
L2(B+

r (x0))
‖x

1−2s
2

n+1 w̃‖
1−α
L2(B+

4r(x0))
.

Similarly, by a reduction to uniformly elliptic equations, we deduce an interior three
balls estimate, which allows us to propagate information within the interior of the upper
half-plane.

Proposition 5.4 (Bulk three balls inequality). Let W,Ω be as above and s ∈ (0, 1). Let
r > 0 and let x̄0 = (x̄′0, 5r), where x̄′0 ∈ Rn is arbitrary. Assume that w̃ is a solution to
(5.1). Then there exist constants α ∈ (0, 1) and C > 1, which only depend on s, n, such
that

‖x
1−2s

2
n+1 w̃‖L2(B+

2r(x̄0)) ≤ C‖x
1−2s

2
n+1 w̃‖

α
L2(B+

r (x̄0))
‖x

1−2s
2

n+1 w̃‖
1−α
L2(B+

4r(x̄0))
.

Combining the results of Proposition 5.3, 5.4, we infer the following logarithmic prop-
agation of smallness estimate from a (bulk) neighbourhood of W to a (bulk) neighbour-
hood of Ω:

Theorem 5.5 (Bulk logarithmic stability estimate). Let W,Ω be as above and let w̃ be
a solution of (5.1) with s ∈ (0, 1). Assume that for some constant C1 > 1, which only
depends on the relative geometries of W , Ω,

‖x
1−2s

2
n+1 w̃‖L2(W×[0,1]) ≤ η,

‖x
1−2s

2
n+1 w̃‖L2(Rn×[0,C1]) + ‖x

1−2s
2

n+1 ∇w̃‖L2(Rn+1
+ ) ≤ E,

(5.6)

where E
η > 1. Then we have that

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,1])

≤ CE 1

log
(
C E
η

)µ ,
where the constants C > 1 and µ > 0 depend on s, n, C1, Ω and W .
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In order to turn the bound of Theorem 5.5 into an estimate, from which we can
deduce the desired quantitative unique continuation result of Theorem 5.1, we seek
to control bulk by boundary contributions. More precisely, we aim at controlling the
first quantity in (5.6) by suitably weighted Neumann data. To this end, we rely on
the following interpolation estimate, whose proof in turn is based on a boundary-bulk
Carleman estimate (see Proposition 5.7):

Proposition 5.6 (Boundary-bulk interpolation). Let s ∈ (0, 1) and let x0 ∈W ×{0} ⊂
Rn × {0}. Assume that r0 ∈ (0, 1/4) is such that B′32r0

(x0) ⊂W × {0}. Suppose that w̃
is a solution to (5.1). Then for each r0 ∈ (0, 1/4) there exist constants α = α(s, n, r0) ∈
(0, 1), C = C(n, s, r0) > 1 and c = c(n, s, r0) > 0 such that

‖x
1−2s

2
n+1 w̃‖L2(B+

cr(x0)) ≤ C‖x
1−2s

2
n+1 w̃‖

α
L2(B+

16r(x0))
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−αH−s(B′16r(x0))

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(B′16r(x0)).

The combination of all these propagation of smallness results ultimately allows us to
conclude the main result of Theorem 5.1 (c.f. the last proof in Section 5.4).

The remainder of the section thus consists of proving these results. First, in Section
5.2 we deduce the results of Proposition 5.3-Theorem 5.5. Then we derive the proof for
Proposition 5.6, which relies on the Carleman estimate of Proposition 5.7 and interpo-
lation arguments. Finally in Section 5.4 we combine all results into the statement of
Theorem 5.1.

5.2. Proofs of the stability results of Proposition 5.3-Theorem 5.5. In this
section we provide the proofs of the results of Propositions 5.3-Theorem 5.5 stated in
the previous subsection.

First we provide the proof of the three balls inequality at the boundary, which relies
on the boundary Carleman estimate from [Rü15] (see also the Appendix, Section 9).

Proof of Proposition 5.3. Without loss of generality, by scaling we may assume that
r = 1 (which does not affect the constant C > 1 from the proposition by homogeneity).
The proof of the Proposition is a consequence of the Carleman estimates from Step 2
in the proof of Corollary 3.1 in [Rü15], pp. 95-96 (in order to provide a self-contained
argument, an outline of the proof of this is contained in the Appendix, Section 9): For
all functions w̄ ∈ C∞0 (Rn+1) with w̄ = 0 on Rn × {0} and for the weight function

φ(x) = φ̃(ln |x|) with

φ̃(t) = −t+
1

10

(
t arctan(t)− 1

2
ln(1 + t)

)
,
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we have for τ ≥ 1

τ1/2+s‖eτφ(1 + ln(|x|)2)−1/2|x|−sw̄‖L2(Rn×{0})

+ τ3/2‖eτφx
1−2s

2
n+1 (1 + ln(|x|)2)−1/2|x|−1w̄‖L2(Rn+1

+ )

+ τ1/2‖eτφx
1−2s

2
n+1 (1 + ln(|x|)2)−1/2∇w̄‖L2(Rn+1

+ )

≤ C
(
‖eτφ|x|x

2s−1
2

n+1 ∇ · x
1−2s
n+1 ∇w̄‖L2(Rn+1

+ )

)
.

(5.7)

Further we recall that solutions to the homogeneous equation

∇ · x1−2s
n+1 ∇ŵ = 0 in B+

4 ,

ŵ = 0 on B′4,
(5.8)

satisfy Caccioppoli’s inequality (see Lemma 4.5)

‖x
1−2s

2
n+1 ∇ŵ‖L2(B+

r ) ≤ Cr
−1‖x

1−2s
2

n+1 ŵ‖L2(B+
2r)

for all 0 < r ≤ 2.
Combining these two ingredients, we infer the desired three balls inequality at the

boundary of the domain: Indeed, we consider w̄ := w̃η, where w̃ is a solution to (5.1)
and hence satisfies the homogeneous equation (5.8) in a neighbourhood of W×{0}. Here
η(x) = η̃(|x|) is a radial cut-off function, which is chosen such that

η̃(t) = 0 for t ∈ (0, 1/4) ∪ (7/2,∞), η̃(t) = 1 for t ∈ (1/2, 3), |η̃′| ≤ C.

We expand the right hand side of (5.7)

x
2s−1

2
n+1 ∇ · x

1−2s
n+1 ∇(w̃η) = x

1−2s
2

n+1 w̃(x2s−1
n+1 ∇ · x

1−2s
n+1 ∇η) + 2x

1−2s
2

n+1 ∇w̃ · ∇η.(5.9)

Inserting this into the Carleman inequality (5.7) yields

eτφ̃(1)‖x
1−2s

2
n+1 w̃‖L2(A+

1/2,1
) ≤ C(eτφ̃(1/4)‖x

1−2s
2

n+1 w̃‖L2(A+
1/8,2

) + eτφ̃(3)‖x
1−2s

2
n+1 w̃‖L2(A+

2,4)),

where A+
r1,r2 := B+

r2 \ B
+
r1 and where we applied Caccioppoli’s inequality to bound the

gradient contributions on the right hand side of (5.8), which is given by (5.9). Dividing

by eτφ̃(1), filling up the annuli to obtain solid balls and optimizing in τ yields the desired
three balls inequality (c.f. the proof of Proposition 4.1 in [Rü15] and the arguments in
[B13] for more details). �

The interior three balls inequality follows from three balls estimates for uniformly
elliptic equations (c.f. for instance [ARRV09]).

Proof of Proposition 5.4. The result of Proposition 5.4 follows by rescaling from a three
balls inequality for uniformly elliptic operators. Indeed, by considering u(x) := w̃(rx)
and setting x̂0 := (x′0/r, 5) the desired estimate turns into

‖x
1−2s

2
n+1 u‖L2(B+

2 (x̂0)) ≤ C‖x
1−2s

2
n+1 u‖

α
L2(B+

1 (x̂0))
‖x

1−2s
2

n+1 u‖
1−α
L2(B+

4 (x̂0))
.
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x
′

xn+1

W × {0} Ω× {0}

Figure 1. An illustration of the propagation of smallness argument used
in the proof of Theorem 5.5. Starting from a ball B+

r0(x0), which is
centered at a point in W × {0} (in the picture we have W = B′r0(x0)),
we propagate information along a chain of balls. This is achieved by
iterating the boundary and bulk three balls inequalities of Propositions
5.3, 5.4. Upon reaching the part of Rn+1, which is close to Ω × {0}, we
have to avoid intersecting the boundary Ω × {0}, since there no control
is available. Hence, we need to refine the size of the balls towards the
boundary Ω×{0}. Consequently, the radii are chosen to be proportional
to xn+1 in this region. This explains the logarithmic dependence of the
number of balls N on the parameter h.

Moreover, the function u solves

∇ · x1−2s
n+1 ∇u = 0 in B9/2(x̂0).

As x1−2s
n+1 ≥ 22s−1 in B9/2(x̂0), this implies that in the domain under consideration the

equation is uniformly elliptic. Thus, the desired three balls inequality follows from the
standard three balls inequality for uniformly elliptic equations (c.f. for example the
review article [ARRV09]) and by returning from u to w̃. �

With these three balls estimates at hand, it becomes possible to prove the first quan-
titative propagation of smallness result, if we assume an initial bulk smallness condition
as in (5.6).

Proof of Theorem 5.5. The proof follows from a chain of balls argument. Indeed, using
Propositions 5.3 and 5.4, we consider a chain of balls in the interior of Rn+1

+ connecting
W×{0} to the line Ω×{h} for some h ∈ (0, 1), which will be specified later (see Figure 1).
Here in vertical xn+1-direction, the chain of balls extends to heights up to C1 > 1 (which
was the constant up to which the weighted L2 norm of w̃ was assumed to be controlled).
Choosing the size of our balls to be comparable to the value of xn+1, the number of
balls, which are involved in the chain can be estimated by N ∼ C(W,Ω, n)|log(h)|. We
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next apply the three balls inequalities from Propositions 5.3 and 5.4: First we invoke
Proposition 5.3 once in the form

‖x
1−2s

2
n+1 w̃‖L2(B+

2r0
(x0))

E
≤ C

‖x
1−2s

2
n+1 w̃‖L2(B+

r0
(x0))

E


α

(5.10)

for some point x0 ∈ Ω and some radius r0 > 0 such that B+
r0(x0) ⊂ W × [0, 1]. Sec-

ondly, we then choose a small interior ball having some overlap with B+
2r(x0) and iterate

Proposition 5.4 N times in a similar way as in (5.10). This yields that for some x0 ∈W
and an appropriate choice of r0 > 0

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[h,1])

E
≤ C

‖x
1−2s

2
n+1 w̃‖L2(B+

r0
(x0))

E


αN

≤ C
( η
E

)hC(W,Ω,n)|log(α)|

.

We next bound the mass in Ω̂× [0, h]. Let p ∈ (2,∞) be the Sobolev exponent associated

with the Muckenhoupt weight x
1−2s

2
n+1 (c.f. [FKS82]). Then,

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,h])

≤ C(s,Ω, p)h
(2−2s)

(
1
2
− 1
p

)
‖x

1−2s
p

n+1 w̃‖Lp(Ω̂×[0,1])

≤ C(s,Ω, p)h
(2−2s)

(
1
2
− 1
p

)
‖x

1−2s
2

n+1 ∇w̃‖L2(Rn+1
+ ).

(5.11)

Here we used Hölder’s inequality combined with Sobolev’s inequality (c.f. [FKS82]).
Thus, we infer that

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,1])

≤ ‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[h,1])

+ ‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,h])

≤ C
( η
E

)hC(W,Ω,n)|log(α)|

E + C(s,Ω, p)h
(2−2s)

(
1
2
− 1
p

)
E.

(5.12)

Optimizing the right hand side in h > 0 as in [ARRV09, proof of Theorem 5.3] yields
the desired estimate. �

5.3. Proof of the boundary-bulk interpolation inequality of Proposition 5.6.
In this subsection, we provide the proof of the interpolation inequality from Proposition
5.6. To this end, we crucially rely on a boundary-bulk Carleman estimate (Proposition
5.7 in Section 5.3.1), which is valid for s ∈ [1/2, 1) and which we present and prove
in the next subsection. As a direct consequence of the Carleman estimate, we obtain
a first version of a boundary-bulk interpolation estimate for s ∈ [1/2, 1) (Proposition
5.10). This is then upgraded by invoking interpolation estimates (see Section 5.3.2). For
s ∈ (0, 1/2) we use the conjugate equation and reduce the problem to the case s ∈ [1/2, 1)
(see Section 5.3.3).

5.3.1. Boundary-bulk Carleman estimate. We start by discussing the boundary-bulk
Carleman estimate.
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Proposition 5.7. Let s ∈ [1/2, 1) and let w ∈ H1(Rn+1
+ , x1−2s

n+1 dx) with supp(w) ⊂ B+
1/2

be a solution to

∇ · x1−2s
n+1 ∇w = f in Rn+1

+ ,

w = 0 on Rn × {0}.

Suppose that

φ(x′, xn+1) := −|x
′|2

4
+ 2

[
− 1

2− 2s
x2−2s
n+1 +

1

2
x2
n+1

]
.(5.13)

Assume additionally that

‖x
2s−1

2
n+1 f‖L2(Rn+1

+ ) + lim
xn+1→0

‖x1−2s
n+1 ∂n+1w‖L2(Rn×{0})(5.14)

+ lim
xn+1→0

‖∇′w‖L2(Rn×{0}) <∞.

Then for any τ ≥ 4 one has

τ3/2‖eτφx
1−2s

2
n+1 w‖L2(Rn+1

+ ) + τ1/2‖eτφx
1−2s

2
n+1 ∇w‖L2(Rn+1

+ )

≤ C
(
‖eτφx

2s−1
2

n+1 f‖L2(Rn+1
+ ) + τ lim

xn+1→0
‖eτφx1−2s

n+1 ∂n+1w‖L2(Rn×{0})

+τ lim
xn+1→0

‖eτφx′ · ∇′w‖L2(Rn×{0})

)
.

(5.15)

Remark 5.8. The Carleman estimate from Proposition 5.7 is aimed at deducing a bulk-
boundary interpolation inequality (c.f. Proposition 5.10). In order to provide a tool
yielding such a bulk-boundary interpolation estimate, the Carleman weight function has
to satisfy the following two requirements:

• It has to be monotone decreasing in |x| for x ∈ B+
1/2.

• It has to be pseudoconvex.

In order to satisfy the first requirement, we include the non-(pseudo)-convex term − |x
′|2
4 .

The lack of pseudoconvexity of this contribution is compensated by the sufficiently strong
pseudoconvexity of the xn+1 contributions in the weight.

We remark that for s ∈ (0, 1/2) this weight can no longer be used without modifica-
tions, as the contribution −x2−2s

n+1 becomes concave and hence violates the pseudocon-
vexity requirement.

Remark 5.9. For the case s = 1/2 the estimate from Proposition 5.7 is well-known,
cf. [LR95] or [JL99], so our main emphasis will be on the case s > 1/2 (but the case
s = 1/2 is naturally included in our estimates).

Proof of Proposition 5.7. The proof is rather long. To shorten the notations we will
write y = xn+1, x = (x′, y), where x′ ∈ Rn, and

(u, v) := (u, v)L2(Rn+1
+ ),

‖u‖ := ‖u‖L2(Rn+1
+ ).
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We will also use the notation

(u, v)0 := (u( · , 0), v( · , 0))L2(Rn),

‖u‖0 := ‖u( · , 0)‖L2(Rn).

More precisely, since we will be dealing with functions that may be singular as y → 0,
all integrations will actually be carried out in the set {y > ε} where w is H2 by uniform
ellipticity and (5.14). In the end we will take the limit ε → 0. Thus to be precise
the notation ‖u‖0 means limε→0 ‖u( · , ε)‖L2(Rn), etc (the existence of such limits will be
justified in the proof).

We will also consider the more general weight

φ(x′, xn+1) := −|x
′|2

4
+ γ

[
− 1

2− 2s
x2−2s
n+1 +

1

2
x2
n+1

]
(5.16)

where γ is a fixed large parameter (eventually we will choose γ = 2, but working with a
general γ makes the argument more systematic). We split the proof into three main steps.

Step 1: Conjugation. We first carry out a conjugation procedure and compute the
corresponding commutator and boundary terms. To this end, we define

L̃ := y
2s−1

2 ∇ · y1−2s∇(y
2s−1

2 · ) = ∆′ + ∂2
n+1 + csy

−2,

which corresponds to switching from w to ũ := y
1−2s

2 w. We note that even if w was
non-singular as y → 0, the function ũ will become singular due to the presence of the
singular weight. Hence, particular care will be required when dealing with boundary

contributions on Rn × {0}. Here and in the sequel we use the abbreviation cs := 1−4s2

4 .
We note that cs ≤ 0 for s ∈ [1/2, 1).

Next we conjugate L̃ with eτφ :

Lφ := eτφL̃e−τφ = ∆′ + ∂2
y + τ2|∇φ|2 − 2τ∇φ · ∇ − τ∆φ+ csy

−2.

We will apply Lφ to the function u := eτφũ = eτφy
1−2s

2 w. Up to boundary contributions,
the operator Lφ can be written as a sum of a symmetric and an anti-symmetric operator:

S = ∆′ + ∂2
y + τ2|∇φ|2 + csy

−2,

A = −2τ∇φ · ∇ − τ∆φ.

Seeking to obtain lower bounds for Lφ, we expand the L2 norm

‖Lφu‖2 = ‖Su‖2 + ‖Au‖2 + ([S,A]u, u)

+2τ(Su, (∂yφ)u)0 − (Au, ∂yu)0 + (∂y(Au), u)0︸ ︷︷ ︸
:= (BC1)

.(5.17)

We ignore the boundary contributions, denoted by (BC1), for the moment and concen-
trate on the bulk terms. The boundary contributions will be discussed separately in
Step 3.

We proceed by computing the commutator contribution from (5.17), which, in order
to obtain the desired lower bound, has to yield positivity on the intersection of the
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characteristic sets of S and A. Since φ is a sum of two functions, of which one only
depends on the tangential and one only depends on the normal variables, we obtain

[S,A] = [S,A]1 + [S,A]2,

where we separate the effects of the tangential and the normal parts of the weight
function φ:

[S,A]1 := [∆′ + τ2|∇′φ|2,−2τ∇′φ · ∇′ − τ∆′φ],

[S,A]2 := [∂2
y + τ2(∂yφ)2 + csy

−2,−2τ∂yφ∂y − τ∂2
yφ].

Combining this with the structure of our weight function yields

[S,A]1 = 4τ3
n∑
j=1

(∂jφ)2∂2
jφ− 4τ

n∑
j=1

(∂2
jφ)∂2

j − τ
n∑
j=1

[4(∂3
jφ)∂j + ∂4

jφ]

= 4τ3
n∑
j=1

(∂jφ)2∂2
jφ− 4τ

n∑
j=1

(∂2
jφ)∂2

j ,

where we used the vanishing of the third and higher order tangential derivatives of our
weight function. By considering the associated bilinear form and by carrying out an
integration by parts, we infer that

([S,A]1u, u) = 4τ3
n∑
j=1

(u, (∂jφ)(∂2
jφ)(∂jφ)u)

+ 4τ

n∑
j=1

(∂ju, (∂
2
jφ)∂ju).

(5.18)

Furthermore, by a similar integration by parts the second commutator becomes

([S,A]2u, u) = 4τ3(u, (∂yφ)2(∂2
yφ)u) + 4τ(∂yu, (∂

2
yφ)∂yu)

− τ(u, (∂4
yφ)u)− 4csτ(u, y−3(∂yφ)u)

+4τ((∂2
yφ)∂yu, u)0︸ ︷︷ ︸

:= (BC2)

.
(5.19)

Step 2: Estimating the bulk contributions. We first deal with the bulk contributions
from the commutators in (5.18), (5.19). By inserting the explicit form of our weight
function, we infer that the contribution in (5.18) is given by

([S,A]1u, u)L2(Rn+1
+ ) = −1

2
τ3‖|x′|u‖2

L2(Rn+1
+ )
− 2τ‖∇′u‖2

L2(Rn+1
+ )

.(5.20)

This is a negative contribution, but will be compensated by exploiting positivity from
S at the end of this step.

We turn to the contributions in (5.19). Since for s ∈ [1/2, 1)

(∂yφ)2∂2
yφ = γ3(y1−2s − y)2((2s− 1)y−2s + 1)(5.21)

≥ γ3(y1−2s − y)2,
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and since

− τ(u, (∂4
yφ)u)− 4csτ(u, y−3(∂yφ)u)

= γτ(1− 2s)(1 + 2s)2‖y−1−su‖2 − 4γτcs‖y−1u‖2,

the contributions in (5.19) can be estimated from below by

([S,A]2u, u) ≥ 4γ3τ3‖(y1−2s − y)u‖2

+ 4γτ(2s− 1)‖y−s∂yu‖2

+ γτ(1− 2s)(1 + 2s)2‖y−s−1u‖2

+ 4γτ‖∂yu‖2 − 4γτcs‖y−1u‖2

+ (BC2).

(5.22)

By virtue of Hardy’s inequality (Lemma 4.6), we have that

‖y−1−su‖2 ≤ 4

(1 + 2s)2
‖y−s∂yu‖2 +

2

1 + 2s
‖y−

1
2
−su‖20.(5.23)

Thus, the contributions in (5.22) can be further bounded from below by

([S,A]2u, u) ≥ 4γ3τ3‖(y1−2s − y)u‖2 + 4γτ‖∂yu‖2 − 4γτcs‖y−1u‖2

+ (BC2)−2γτ(2s− 1)(1 + 2s)‖y−
1
2
−su‖20︸ ︷︷ ︸

:=(BC3)

.(5.24)

All of these bulk contributions are positive (the boundary contributions will be discussed
separately in Step 3 below).

In order to show that the overall bulk commutator is positive and yields the contribu-
tions claimed in (5.15), it thus suffices to control the negative contributions from (5.20).
We essentially absorb these into Su: More precisely, we observe that

−τ(Su, u) = τ‖∇u‖2 − τ3‖|∇φ|u‖2 − csτ‖y−1u‖2

+τ(∂yu, u)0︸ ︷︷ ︸
:=(BC4)

.(5.25)

As for s ∈ [1/2, 1) the constant cs is negative, the only nonpositive contribution in (5.25)
is

− τ3‖|∇φ|u‖2

= −τ3

(
1

4
‖|x′|u‖2 + γ2‖(y1−2s − y)u‖2

)
≥ −τ3

(
1

16
‖u‖2 + γ2‖(y1−2s − y)u‖2

)
,

(5.26)

where in the last line, we used the support assumption for u. Moreover,

2γτ |(Su, u)| ≤ ‖Su‖2 + γ2τ2‖u‖2.
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Combining the last estimate with (5.25), (5.26) and the trivial estimate−csτ‖y−1u‖2
L2(Rn+1

+ )
≥

0 leads to

‖Su‖2 ≥ 2γτ‖∇u‖2 − 2γτ3

(
1

16
‖u‖2 + γ2‖(y1−2s − y)u‖2

)
(5.27)

+ 2γ(BC4)− γ2τ2‖u‖2.

Finally, going back to (5.17), using the trivial estimate ‖Au‖2 ≥ 0 and inserting the
estimates (5.27), (5.20), (5.24) gives that

‖Lφu‖2 = ‖Su‖2 + ‖Au‖2 + ([S,A]u, u) + (BC1)

≥ 2γ3τ3‖(y1−2s − y)u‖2 + 2(γ − 1)τ‖∇u‖2 − 4γτcs‖y−1u‖2

−
(
γ

8
τ3 +

1

8
τ3 + γ2τ2

)
‖u‖2 +

3∑
j=1

(BCj) + 2γ(BC4).

(5.28)

The support condition for u implies

‖u‖2 ≤ 4‖(y1−2s − y)u‖2.

Now if γ ≥ 2 and τ ≥ 4, we have

‖Lφu‖2 ≥ γ3τ3‖(y1−2s − y)u‖2 + γτ‖∇u‖2 − 4γτcs‖y−1u‖2(5.29)

+

3∑
j=1

(BCj) + 2γ(BC4).

We wish to apply this estimate to u = eτφy
1−2s

2 w. With this choice for the function u,
one has

‖∇u‖2 ≥ 1

2
‖eτφy

1−2s
2 ∇w‖2 − 2τ2‖eτφ|∇φ|y

1−2s
2 w‖2

− 2

(
1− 2s

2

)2

‖eτφy
−1−2s

2 w‖2

≥ 1

2
‖eτφy

1−2s
2 ∇w‖2 − 4γ2τ2‖(y1−2s − y)u‖2 +

2s− 1

2s+ 1
2cs‖y−1u‖2.

In (5.29), we use the estimate γτ‖∇u‖2 ≥ γτ
8 ‖∇u‖

2 and insert the previous bound for

‖∇u‖2 to get

‖eτφL̃(y
1−2s

2 w)‖2 ≥ γ3τ3

8
‖eτφy

1−2s
2 w‖2 +

γτ

16
‖eτφy

1−2s
2 ∇w‖2(5.30)

+
3∑
j=1

(BCj) + 2γ(BC4).

This yields the bulk contributions in (5.15).
Step 3: Boundary contributions. From now on we fix the value γ = 2. Before dis-

cussing the individual contributions which arise in (BC1)− (BC4), we show that

‖eτφy−2sw‖0 ≤ Cs‖eτφy1−2s∂yw‖0.(5.31)
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Recall that ‖v‖0 is interpreted as limy→0 ‖v( · , y)‖L2(Rn). Indeed, (5.31) is a consequence
of the vanishing Dirichlet data: By the fundamental theorem of calculus we have that
for y > 0

y−2sw(x′, y) = y−2s(w(x′, y)− w(x′, 0)) = y1−2s

1∫
0

∂yw(x′, ty)dt

=

1∫
0

(ty)1−2s∂yw(x′, ty)t2s−1dt.

Multiplying by eτφ, taking the L2 norm with respect to x′ and using the fact that ∂yφ < 0
on supp(w) gives

‖eτφy−2sw( · , y))‖L2(Rn) ≤ sup
t∈(0,1)

‖eτφ( · ,ty)(ty)1−2s∂yw( · , ty)‖L2(Rn)

1∫
0

t2s−1dt.

The last integral is finite, and taking the limit as y → 0 implies (5.31).
Tracking the computations from above, we obtain the following boundary contribu-

tions

(BC)1 = 4τ(∂yu,∇′φ · ∇′u)0 + 2τ((∂yu)2, ∂yφ)0

− 2τ((∂yφ), |∇′u|2)0 + 2τ((∆′φ− ∂2
yφ)u, ∂yu)0

− τ((∂3
yφ)u, u)0 + 2τ3((∂yφ)|∇φ|2u, u)0

+ 2τcs(y
−2u, (∂yφ)u)0.

(5.32)

We again emphasize that the treatment of these boundary terms requires particular
care, since the function u becomes singular as y → 0. Thus all of these contributions are
understood as limits, for instance

(y−2u, (∂yφ)u)0 := lim
y→0

(y−2u( · , y), (∂yφ)u( · , y))L2(Rn).

We bound the terms from (5.32) individually. To this end, we first notice that

2τcs(y
−2u, (∂yφ)u)0 ≥ 0, −τ((∂3

yφ)u, u)0 ≥ 0,

−2τ((∂yφ), |∇′u|2)0 ≥ 0.

Hence it suffices to estimate the remaining contributions. We rewrite these in terms of

w. Recall that u = eτφy
1−2s

2 w. The estimate (5.31) implies that

∂yu = eτφ[y
1−2s

2 ∂yw + y
3−2s

2 R+
1− 2s

2
y−

1+2s
2 w], ‖R‖0 ≤ Cτ,

∇′u = eτφ[y
1−2s

2 ∇′w + ys+
1
2R′], ‖R′‖0 ≤ Cτ.

Using again (5.31) several times, we obtain that∣∣(∂yu,∇′φ · ∇′u)0

∣∣ ≤ |(eτφ[y1−2s∂yw +
1− 2s

2
y−2w],

1

2
eτφx′ · ∇′w)0|

≤ C‖eτφy1−2s∂yw‖0‖eτφx′ · ∇′w‖0.
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Similarly, using (5.31) repeatedly,∣∣((∂yu)2, ∂yφ)0

∣∣ ≤ C‖eτφy1−2s∂yw‖20,∣∣((∆′φ− ∂yφ)u, ∂yu)0

∣∣ ≤ C‖eτφy1−2s∂yw‖20,∣∣((∂yφ)|∇φ|2, u2)
∣∣ ≤ C‖eτφy2−4sw‖20 → 0.

Next we consider the contribution (BC2): Rewriting this in terms of w and using
(5.31) entails

|(BC2)| = 4τ |((∂2
yφ)∂yu, u)0| ≤ Cτ‖eτφy1−2s∂yw‖20.(5.33)

For the boundary contributions in (5.24) we have that by (5.31)

|(BC3)| ≤ Cτ‖y−
1
2
−su‖20

≤ Cτ‖eτφy−2sw‖20
≤ Cτ‖eτφy1−2s∂yw‖20.

(5.34)

Finally, again by (5.31)

|(BC4)| ≤ Cτ(∂yu, u)0 → 0.(5.35)

Thus, all the boundary contributions either vanish or are bounded by ‖eτφy1−2s∂yw‖0
and ‖eτφx′ · ∇′w‖0, which concludes the argument. �

5.3.2. Proof of Proposition 5.6 in the case s ∈ [1/2, 1). With the Carleman estimate of
Proposition 5.7 at hand, we approach the bulk-boundary estimates. As a direct conse-
quence of Proposition 5.7, we first infer an “L2 based version” of Proposition 5.6.

In the interpolation result, we adapt our geometry to the geometry of the weight func-
tion φ from the Carleman estimate of Proposition 5.7, as the level sets of the Carleman
weight become increasingly degenerate as s→ 1. To this end, we introduce the following
sets for s ∈ [1/2, 1) and x0 = (x′0, 0) ∈ Rn × {0}:

C+
s,r(x0) :=

{
(x′, xn+1) ∈ Rn+1

+ : xn+1 ≤
(

(1− s)
(
r − |x

′ − x′0|2

4

)) 1
2−2s

}
,

C ′s,r(x0) := C+
s,r(x0) ∩ (Rn × {0}).

For convenience we also use the following abbreviations

C+
s,r := C+

s,r(0), C ′s,r := C ′s,r(0).

We remark that for s = 1/2 these sets are paraboloids which are opening towards the
negative xn+1-axis. For increasing values of s ∈ [1/2, 1) the level sets become very flat
and degenerate as s→ 1.

With this notation at hand, we infer the following result:
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Proposition 5.10 (Boundary-bulk interpolation I). Let s ∈ [1/2, 1) and assume that
C ′s,8r0(x0) ⊂W where x0 ∈ Rn × {0} and 8r0 ≤ 1. Suppose that w̃ ∈ H1(Rn+1, x1−2s

n+1 ) is

a solution to (5.1). Then there exists α = α(n, s, r0) ∈ (0, 1) such that

‖x
1−2s

2
n+1 w̃‖L2(C+

s,r0
(x0)) ≤ C‖x

1−2s
2

n+1 w̃‖
α
L2(C+

s,4r0
(x0))

× ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−αL2(C′s,4r0

(x0))
.

Proof of Proposition 5.10. Since the equation is invariant under tangential translations,
we may assume that x0 = 0. As in [LR95] we prove the interpolation estimate as a
consequence of the Carleman inequality from Proposition 5.7. This inequality will be
applied to the function

w̄ := ηw̃

where η is a smooth cut-off function chosen so that

η(x) = 1 in C+
s,3r0/2

,

η(x) = 0 in Rn+1
+ \ C+

s,2r0
.

Moreover, we choose it such that ∂n+1η = 0 on Rn+1
+ and such that

(5.36) |∂n+1η| ≤ C(r0)xn+1.

The function w̄ satisfies supp(w̄) ∈ B+
1/2 and it solves

∇ · x1−2s
n+1 ∇w̄ = g in B+

1 ,

w̄ = 0 in B′1 × {0},

where g = w̃(∇ · x1−2s
n+1 ∇η) + 2x1−2s

n+1 ∇w̃ · ∇η. To apply Proposition 5.7, we need to
show that (5.14) is satisfied for w̄ and g. The expression for g together with (5.36) and
Caccioppoli’s inequality (Lemma 4.5) imply

‖x
2s−1

2
n+1 g‖L2(Rn+1

+ ) ≤ C(‖x
1−2s

2
n+1 w̃‖L2(B+

2r0
) + ‖x

1−2s
2

n+1 ∇w̃‖L2(B+
2r0

))(5.37)

≤ C‖x
1−2s

2
n+1 w̃‖L2(B+

4r0
).

Since w̃ is the Caffarelli-Silvestre extension of w ∈ Hs(Rn) where w|B′8r0 = 0, Lemma

4.3 gives that in L2(Rn) norms

lim
xn+1→0

∇′w̄ = 0, lim
xn+1→0

x1−2s
n+1 ∂n+1w̄ = η lim

xn+1→0
x1−2s
n+1 ∂n+1w̃.

Hence, w̄ is admissible in the Carleman estimate (5.15). Inserting w̄ into (5.15) and
using the vanishing of ∇′w̄ on Rn × {0} therefore entails

τ3/2eτφ−(r0)‖x
1−2s

2
n+1 w̃‖L2(B+

r0
) ≤ C(eτφ+(3r0/2)‖x

1−2s
2

n+1 g‖L2(B+
2r0
\B+

3r0/2
)

+ τ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(B′2r0

)).
(5.38)
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Here we wrote φ−(r) = inf
x∈∂C+

s,r

φ, φ+(r) = sup
x∈∂C+

s,r

φ. We note that by the construction

of the weight function φ and the assumption that r0 ≤ 1/2, it holds that

φ+(3r0/2) ≤ −3r0/2 + x2
n+1 ≤ −3r0/2 + 9

r2
0

16
≤ −3r0/2 + 9

r0

32

≤ −9

8
r0 ≤ −r0 ≤ φ−(r0) ≤ 0,

where we used that due to the fact that s ≥ 1/2 it holds that

x2
n+1 ≤ ((1− s)3r0/2)

1
1−s ≤

(r0

2

)2
.

Dividing by τ3/2, using that τ ≥ 1 and using (5.37), the estimate (5.38) further reduces
to

eτφ−(r0)‖x
1−2s

2
n+1 w̃‖L2(B+

r0
) ≤ C(eτφ+(3r0/2)‖x

1−2s
2

n+1 w̃‖L2(B+
4r0

)

+ ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(B′2r0

)).

Multiplying by e−τφ−(r0) and optimizing the right hand side of the inequality in τ (for
which we use that the weight is a decreasing function) thus leads to the desired estimate.

�

We next seek to improve the boundary norm which is involved in the boundary-bulk
interpolation estimate. We split the argument for this into two steps: We will first
discuss the setting where s ∈ [1/2, 1). Here we will work with the function w̃ solving
(5.1). Then for the case s ∈ (0, 1/2), which is discussed in Proposition 5.12, we will rely
on the conjugate function.

Proposition 5.11 (Boundary-bulk interpolation II). Let s ∈ [1/2, 1) and assume that
C ′s,8r0(x0) ⊂ W where x0 ∈ Rn × {0} and 8r0 ≤ 1. Suppose that w̃ is the Caffarelli-

Silvestre extension of some f ∈ Hγ(Rn), where γ ∈ R, with f |W = 0. Then there exist
C = C(s, n, r0) > 1 and α = α(n, s, r0) ∈ (0, 1) such that

‖x
1−2s

2
n+1 w̃‖L2(C+

s,r0
(x0)) ≤ C‖x

1−2s
2

n+1 w̃‖
α
L2(C+

s,8r0
(x0))

× ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−αH−s(C′s,4r0

(x0))
.

Proof. The argument follows from a combination of Proposition 5.10, an interpolation
inequality and L2-based regularity results for solutions to the homogeneous Dirichlet
problem for the Caffarelli-Silvestre extension. Note that (∇′)N w̃ is in H1(Rn+1, x1−2s

n+1 dx)
locally near C ′s,8r0(x0) for any N ≥ 0 by Lemma 4.3. We may assume that x0 = 0. We
split the proof into two main steps.

Step 1: Interpolation. First we prove that for any u ∈ H1(Rn+1
+ , x2s−1

n+1 dx) and any
µ > 0, the following interpolation inequality holds:

‖u‖L2(Rn) ≤ C(µ1−s‖u‖H1(Rn+1
+ ,x2s−1

n+1 dx) + µ−s‖u‖H−s(Rn)).(5.39)
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Indeed, this is a consequence of the estimate

‖u‖L2(Rn) =

[ ∫
Rn

(〈ξ〉2−2s|û|2)s(〈ξ〉−2s|û|2)1−sdξ

]1/2

≤
(
µ1−s‖u‖H1−s(Rn)

)s (
µ−s‖u‖H−s(Rn)

)1−s
≤ Csµ1−s‖u‖H1(Rn+1

+ ,x2s−1
n+1 dx) + (1− s)µ−s‖u‖H−s(Rn),

where we used the trace characterization of H1−s(Rn) in Lemma 4.4.

Step 2: Application. We apply the estimate from Step 1 to the function

u(x) = lim
xn+1→0

η(x)(x1−2s
n+1 ∂n+1w̃(x)),

where η is a smooth cut-off function supported in C+
s,4r0

with η = 1 in C+
2r0

. Note that

u ∈ H1(Rn+1
+ , x2s−1

n+1 dx) by Lemma 4.3. Inserting u into the interpolation inequality from
Step 1, yields

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(C′s,2r0

) ≤ ‖η lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(Rn)

≤ Cµ1−s
(
‖x

2s−1
2

n+1 ∇(ηx1−2s
n+1 ∂n+1w̃)‖L2(Rn+1

+ ) + ‖x
1−2s

2
n+1 η∂n+1w̃‖L2(Rn+1

+ )

)
+ Cµ−s‖η lim

xn+1→0
x1−2s
n+1 ∂n+1w̃‖H−s(Rn).

(5.40)

We study the terms on the right hand side of (5.40) individually. We begin with the bulk
terms. First we note that by Caccioppoli’s inequality (Lemma 4.5 with zero Dirichlet
data)

‖x
1−2s

2
n+1 η∂n+1w̃‖L2(Rn+1

+ ) ≤ C‖x
1−2s

2
n+1 w̃‖L2(C+

s,8r0
).(5.41)

Next, we estimate the highest order bulk term. By using the equation one has ∂n+1(x1−2s
n+1 ∂n+1w̃) =

−x1−2s
n+1 ∆′w̃, and we get

‖x
2s−1

2
n+1 ∇(ηx1−2s

n+1 ∂n+1w̃)‖L2(Rn+1
+ ) ≤ ‖x

2s−1
2

n+1 ∂n+1(ηx1−2s
n+1 ∂n+1w̃)‖L2(Rn+1

+ )

+ ‖x
2s−1

2
n+1 ∇

′(ηx1−2s
n+1 ∂n+1w̃)‖L2(Rn+1

+ )

≤ ‖x
1−2s

2
n+1 η∆′w̃‖L2(Rn+1

+ ) + ‖x
1−2s

2
n+1 (∂n+1η)(∂n+1w̃)‖L2(Rn+1

+ )

+ ‖x
1−2s

2
n+1 (∇′η)∂n+1w̃‖L2(Rn+1

+ ) + ‖x
1−2s

2
n+1 η∂n+1∇′w̃‖L2(Rn+1

+ )

≤ C
(
‖x

1−2s
2

n+1 w̃‖L2(C+
s,8r0

) + ‖x
1−2s

2
n+1 η∂n+1∇′w̃‖L2(Rn+1

+ )

+‖x
1−2s

2
n+1 η∆′w̃‖L2(Rn+1

+ )

)
.

(5.42)

Here we used Caccioppoli’s inequality to control the first order contributions. For the
second order contributions, we note that each of them involves at least one tangential
derivative, and (∇′)N w̃ is locally in H1(Rn+1, x1−2s

n+1 dx) by Lemma 4.3. Thus, we can



THE FRACTIONAL CALDERÓN PROBLEM: LOW REGULARITY AND STABILITY 42

invoke Caccioppoli’s inequality twice, first applied to ∇′w̃ then to w̃. From (5.42) we
then get

‖x
2s−1

2
n+1 ∇(ηx1−2s

n+1 ∂n+1w̃)‖L2(Rn+1
+ ) ≤ C‖x

1−2s
2

n+1 w̃‖L2(C+
s,8r0

).(5.43)

We treat the boundary contribution in (5.40). For this we have

‖η(·, 0) lim
xn+1→0

x1−2s
n+1 ∂n+1w̃(x)‖H−s(Rn)

≤ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃(x)‖H−s(C′s,4r0 ).

(5.44)

Indeed, this follows from duality:

‖ηv‖H−s(Rn) = sup
‖ϕ‖Hs(Rn)=1

|(v, ηϕ)L2(Rn)|

≤ ‖v‖H−s(C′s,4r0 ) sup
‖ϕ‖Hs(Rn)=1

‖ηϕ‖Hs

C
′
s,4r0

= ‖v‖H−s(C′s,4r0 ) sup
‖ϕ‖Hs(Rn)=1

‖ηϕ‖Hs(Rn).

As the function η is a bounded multiplier on Hs(Rn), the last term is uniformly con-
trolled. Thus, setting v = lim

xn+1→0
x1−2s
n+1 ∂n+1w̃, we arrive at (5.44).

Finally, returning to (5.40) and inserting the derived bounds, we obtain

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(C′s,2r0

) ≤ Cµ1−s‖x
1−2s

2
n+1 w̃‖L2(C+

s,8r0
)

+ Cµ−s‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(C′s,4r0 ).

Choosing µ so that both terms on the right are equal then yields

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖L2(C′s,2r0

)

≤ C‖x
1−2s

2
n+1 w̃‖

s
L2(C+

s,8r0
)
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−sH−s(C′s,4r0

)
.

Inserting this into Proposition 5.10 implies the desired result. �

5.3.3. Boundary-bulk interpolation for s ∈ (0, 1/2). For s ∈ (0, 1/2) a Carleman inequal-
ity as the one from Proposition 5.7 does not immediately yield boundary-bulk interpo-
lation estimates, as a simple modification of the weight function does not satisfy the
two requirements from Remark 5.8. Instead of arguing directly by means of a Carleman
inequality, we hence reduce the situation to the case s ∈ (1/2, 1) by duality. To this end,
we note that if w̃ solves (5.1) and if

f := lim
xn+1→0

x1−2s
n+1 ∂n+1w̃,

then by Lemma 4.1 the function

v(x) = x1−2s
n+1 ∂n+1w̃(x)(5.45)
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is the Caffarelli-Silvestre extension of f and solves

∇ · x2s−1
n+1 ∇v = 0 in Rn+1

+ ,

v = f on Rn,

lim
xn+1→0

x2s−1
n+1 ∂n+1v(x) = − lim

xn+1→0
∆′w̃(x) = 0 on W.

(5.46)

Note that 2s− 1 = 1− 2s̄ where we write

s̄ := 1− s.

We claim that with the aid of this observation an analogue of Proposition 5.11 can be
shown:

Proposition 5.12 (Boundary-bulk interpolation III). Let s ∈ (0, 1/2) and let x0 ∈
W × {0} ⊂ Rn × {0}. Assume that r0 ∈ (0, 1/4) is such that C ′s̄,32r0

(x0) ⊂ W × {0}.
Suppose that w̃ is a solution to (5.1). Then there exist constants C > 1, α ∈ (0, 1) such
that

‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,r0
(x0))

≤ C max{‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,16r0
(x0)), ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w̃‖H−s(C′s̄,16r0

(x0))}α

× ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−αH−s(C′s̄,16r0

(x0))
.

Here the constants α,C depend on r0, n, s.

Proof. We may assume that x0 = 0. Let

f := lim
xn+1→0

x1−2s
n+1 ∂n+1w̃,

and let v be the solution of (5.46). Seeking to switch from the situation of homogeneous
Neumann to the case of homogeneous Dirichlet data, we consider the Caffarelli-Silvestre
extension ṽ of ηf , which satisfies

∇ · x2s−1
n+1 ∇ṽ = 0 in Rn+1

+ ,

ṽ = ηf on Rn × {0}.

Here η is a smooth cut-off function chosen so that

η(x) = 1 in C+
s̄,8r0

,

η(x) = 0 in Rn+1
+ \ C+

s̄,16r0
.

Moreover, we choose η so that

(5.47) |∂n+1η| ≤ C(r0)xn+1.

As a consequence, the function v̄ := v− ṽ is the Caffarelli-Silvestre extension of (1− η)f
and solves

∇ · x1−2s̄
n+1 ∇v̄ = 0 in Rn+1

+ ,

v̄ = 0 on C ′s̄,8r0 ,



THE FRACTIONAL CALDERÓN PROBLEM: LOW REGULARITY AND STABILITY 44

with s̄ = 1− s ∈ (1/2, 1). Hence Proposition 5.11 is applicable to v̄ and yields

‖x
1−2s̄

2
n+1 v̄‖L2(C+

s̄,r0
) ≤ C‖x

1−2s̄
2

n+1 v̄‖
α
L2(C+

s̄,8r0
)
‖ lim
xn+1→0

x1−2s̄
n+1 ∂n+1v̄‖1−αH−1+s(C′s̄,4r0

)
.(5.48)

We next observe that since lim
xn+1→0

x1−2s̄
n+1 ∂n+1v|C′s̄,4r0 = 0

lim
xn+1→0

x1−2s̄
n+1 ∂n+1v̄|C′s̄,4r0 = − lim

xn+1→0
x1−2s̄
n+1 ∂n+1ṽ|C′s̄,4r0 .

Also, Lemma 4.1 yields lim
xn+1→0

x1−2s̄
n+1 ∂n+1ṽ = −as̄(−∆)1−s(ηf), and we infer that

‖ lim
xn+1→0

x2s−1
n+1 ∂n+1ṽ‖H−1+s(C′s̄,4r0

) ≤ ‖ lim
xn+1→0

x2s−1
n+1 ∂n+1ṽ‖H−1+s(Rn)

≤ C‖ηf‖H1−s(Rn).
(5.49)

Invoking (5.49), (5.48) turns into

‖x
1−2s̄

2
n+1 v̄‖L2(C+

s̄,r0
) ≤ C‖x

1−2s̄
2

n+1 v̄‖
α
L2(C+

s̄,8r0
)
‖ηf‖1−α

H1−s(Rn)
.(5.50)

We deal with the contributions in this estimate separately. First for the bulk contribu-
tions we note that

‖x
1−2s̄

2
n+1 v̄‖L2(C+

s̄,8r0
) ≤ ‖x

1−2s̄
2

n+1 v‖L2(C+
s̄,8r0

) + ‖x
1−2s̄

2
n+1 ṽ‖L2(C+

s̄,8r0
)

≤ ‖x
1−2s̄

2
n+1 v‖L2(C+

s̄,8r0
) + C‖ηf‖H s̄(Rn)

= ‖x
1−2s

2
n+1 ∂n+1w̃‖L2(C+

s̄,8r0
) + C‖ηf‖H1−s(Rn)

≤ C‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,16r0
) + C‖ηf‖H1−s(Rn).

Here we used the bounds for the Caffarelli-Silvestre extension (Lemma 4.2) as well as
Caccioppoli’s inequality. Similarly,

‖x
1−2s̄

2
n+1 v̄‖L2(C+

s̄,r0
) ≥ ‖x

1−2s̄
2

n+1 v‖L2(C+
s̄,r0

) − ‖x
1−2s̄

2
n+1 ṽ‖L2(C+

s̄,r0
)

≥ ‖x
1−2s

2
n+1 ∂n+1w̃‖L2(C+

s̄,r0
) − C‖ηf‖H1−s(Rn)

≥ c‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,r0
) − C‖ηf‖H1−s(Rn).

In the last step we used a Poincaré inequality. Thus (5.50) becomes

(5.51) ‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,r0
) ≤ C(‖x

1−2s
2

n+1 w̃‖L2(C+
s̄,16r0

) + ‖ηf‖H1−s)α‖ηf‖1−α
H1−s .

We next estimate the boundary contribution ‖ηf‖H1−s(Rn). For any β ≤ 1, we note
that the interpolation inequality (5.39) yields

‖ηf‖Hβ(Rn) = ‖〈|D′|〉β(ηf)‖L2(Rn)

≤ Cµ1−s
(
‖x

2s−1
2

n+1 ∇(〈|D′|〉β(ηv))‖L2(Rn+1
+ ) + ‖x

2s−1
2

n+1 〈|D
′|〉β(ηv)‖L2(Rn+1

+ )

)
+ Cµ−s‖〈|D′|〉β(ηf)‖H−s(Rn).

(5.52)
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Using that ‖〈|D′|〉βu‖L2 ≤ ‖u‖L2 + ‖∇′u‖L2 for β ≤ 1, we have

‖x
2s−1

2
n+1 ∇(〈|D′|〉β(ηv))‖L2(Rn+1

+ ) ≤ ‖x
2s−1

2
n+1 ∇∇

′(ηv)‖L2(Rn+1
+ )

+ ‖x
2s−1

2
n+1 ∇(ηv)‖L2(Rn+1

+ ),

‖x
2s−1

2
n+1 (〈|D′|〉β(ηv))‖L2(Rn+1

+ ) ≤ ‖x
2s−1

2
n+1 ∇

′(ηv)‖L2(Rn+1
+ ) + ‖x

2s−1
2

n+1 ηv‖L2(Rn+1
+ ),

Now from (5.41) and (5.43), we obtain immediately that

‖x
2s−1

2
n+1 ηv‖L2(Rn+1

+ ) + ‖x
2s−1

2
n+1 ∇(ηv)‖L2(Rn+1

+ ) ≤ C‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,8r0
).

A similar argument leading to (5.43) also gives

‖x
2s−1

2
n+1 ∇∇

′(ηv)‖L2(Rn+1
+ ) ≤ C‖x

1−2s
2

n+1 w̃‖L2(C+
s̄,8r0

).

Thus (5.52) turns into

‖ηf‖Hβ(Rn) ≤ Cµ1−s‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,16r0
) + Cµ−s‖ηf‖Hβ−s(Rn).(5.53)

Choosing µ > 0 such that the right hand side contributions become equal, i.e.

µ =
‖ηf‖Hβ−s(Rn)

‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,16r0
)

,

(for which we note that by unique continuation ‖x
1−2s

2
n+1 w̃‖L2(C+

s̄,16r0
) 6= 0 unless w̃ vanishes

globally) implies the multiplicative estimate

‖ηf‖Hβ(Rn) ≤ C‖x
1−2s

2
n+1 w̃‖

s
L2(C+

s̄,16r0
)
‖ηf‖1−s

Hβ−s(Rn)
.

We have thus reduced the exponent of the boundary norm from the space Hβ to the
space Hβ−s. Starting with β = 1 − s and iterating this estimate in total k0 :=

⌈
1
s

⌉
+ 1

times, eventually leads to

‖ηf‖H1−s(Rn) ≤ C‖x
1−2s

2
n+1 w̃‖

γ

L2(C+
s̄,8r0

)
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖1−γH−s(C′s̄,16r0

)
,(5.54)

for some γ ∈ (0, 1). Here we used that ‖ηf‖H−s(Rn) ≤ C‖f‖H−s(C′s̄,16r0
). Inserting (5.54)

into (5.51) then yields the desired result. �

Proof of Proposition 5.6. The proof of Proposition 5.6 now follows directly from an ap-
plication of Proposition 5.11, 5.12 by noting that we can fit a suitably small ball into
the sets C+

s,r0(x0). This determines the constant c > 0 in Proposition 5.6. Similarly, we

can squeeze C+
s,16r0

(x0) into a suitable ball. This concludes the argument. �

In concluding the discussion of the propagation of smallness properties of the Caffarelli-
Silvestre extension, we summarize these in the following result (which will however only
be used in Remark 5.14):
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Proposition 5.13. Let w ∈ H1(B+
4 , x

1−2s
n+1 ) be a solution to

∇ · x1−2s
n+1 ∇w = 0 in B+

4 ,

with f(x) = w(x, 0) ∈ Hs(B′4). Then, there exist α = α(s, n) ∈ (0, 1), c = c(s, n) ∈
(0, 1/2) and C = C(s, n) > 0 such that

‖x
1−2s

2
n+1 w‖L2(B+

c ) ≤ C
(
‖w‖Hs(B′3) + ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w‖H−s(B′3)

)1−α

×
(
‖x

1−2s
2

n+1 w‖L2(B+
1 ) + ‖w‖Hs(B′3) + ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w‖H−s(B′3)

)α
.

(5.55)

Proof of Proposition 5.13. The claim follows from the interpolation result of Proposition
5.6. Indeed, let η be a smooth cut-off function which is equal to one in B′2 and which is
supported in B′3. We consider the function w1 solving

∇ · x1−2s
n+1 ∇w1 = 0 in B+

4 ,

w1 = fη on B′4.

Then the function w2 = w − w1 is a solution to

∇ · x1−2s
n+1 ∇w2 = 0 in B+

2 ,

w2 = 0 on B′2.

For w2 we apply the interpolation result from Proposition 5.6. We thus infer that for
some constant c = c(s, n) ∈ (0, 1/2)

‖x
1−2s

2
n+1 w2‖L2(B+

c ) ≤ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w2‖αH−s(B′1)

×
(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w2‖H−s(B′1) + ‖x

1−2s
2

n+1 w2‖L2(B+
1 )

)1−α
.

(5.56)

Using the triangle inequality and elliptic estimates, we further obtain

‖x
1−2s

2
n+1 w2‖L2(B+

c ) ≥ ‖x
1−2s

2
n+1 w‖L2(B+

c ) − ‖x
1−2s

2
n+1 w1‖L2(B+

c )

≥ ‖x
1−2s

2
n+1 w‖L2(B+

c ) − C‖f‖Hs(B′3).
(5.57)

The triangle inequality and elliptic estimates also yield that

‖x
1−2s

2
n+1 w2‖L2(B+

1 ) ≤ ‖x
1−2s

2
n+1 w‖L2(B+

1 ) + ‖x
1−2s

2
n+1 w1‖L2(B+

1 )

≤ ‖x
1−2s

2
n+1 w‖L2(B+

1 ) + C‖f‖Hs(B′3).
(5.58)

Finally,

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w2‖H−s(B′1) ≤ ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w‖H−s(B′1)

+ ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w1‖H−s(B′1)

≤ ‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w‖H−s(B′3) + C‖f‖Hs(B′3).

(5.59)
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Inserting (5.57)-(5.59) into (5.56) yields the claim. �

Remark 5.14. We remark that an argument as in the proof of Proposition 5.13, which
was based on the Carleman estimate of Proposition 5.7 and resulting interpolation es-
timates, also fixes a mistake in Step 1 in the proof of Lemma 5.1 in the article [Rü17],
if the assumptions in [Rü17] are slightly strengthened. Suppose that in addition to the
conditions stated in [Rü17] and with the notation there, it is also assumed that the lower
order coefficients b, c satisfy the following conditions:

(i) b, c ∈ C2,α(M×R+) and |Cb|, |Cc| ≤ ε, where ε > 0 is a small constant, depending
only on n, s and the ellipticity constants of the metric g.

(ii) If s ∈ (0, 1/2), there is a large constant CM,s,n > 1 depending on M, s, n such
that we have ∂n+1b = 0 = ∂n+1c for y ∈M × [0, CM,s,n] .

Then in deriving the estimate (50) of Lemma 5.1 in [Rü17], it is possible to argue
along the same lines as in the proof of Proposition 5.13. All constants (in particular
the constant in (50) in [Rü17]) also depend on ‖b‖C2,α(B+

3 ), ‖c‖C2,α(B+
3 ). Here the use

of Proposition 5.7 replaces the radial Carleman estimate from Step 1 in the proof of
Lemma 5.1 in [Rü17]. It is necessary to pass to a non-radial weight function, as there is
no Carleman weight in the radial variable only, which satisfies the necessary conditions
listed in Remark 5.8.

We outline the argument for Lemma 5.1 in [Rü17] under the conditions (i), (ii): To
this end, we first note that the Carleman estimate in Proposition 5.7 remains valid for
operators of the form x1−2s

n+1 ∇′ · g∇′ + ∂n+1x
1−2s
n+1 ∂n+1, where g is a smooth, uniformly

elliptic, symmetric tensor field, which only depends on the tangential directions. This is
a consequence of the structure of the proof of Proposition 5.7, in which the tangential
and the normal components (of the commutators) decoupled, and the possibility to
adjust the constant γ > 0. An application of this Carleman estimate then allows to
derive interpolation results as in Proposition 5.6 for the variable coefficient operator
(with lower order contributions). Here the lower order terms are treated as right hand
side contributions, which are absorbed into the left hand side of the Carleman estimate.
The condition ∂n+1b = 0 = ∂n+1c in M × [0, CM,s,n] ensures that we can carry out the
duality arguments outlined in Section 5.3.3 for the case s ∈ (0, 1/2). The strengthened
regularity hypotheses permit the application of elliptic regularity estimates.

5.4. Proof of Theorem 5.1. With Proposition 5.6 at hand, we can finally upgrade
Theorem 5.5 to the improved bound of Theorem 5.1:

Proof of Theorem 5.1. Step 1: Argument for (5.3).
We first present the argument for (5.3). Here it suffices to show that the assumptions

of Theorem 5.1 allow us to invoke the result of Theorem 5.5. To that end, we prove
that the smallness properties in (5.2) imply the smallness condition (5.6) required in
Theorem 5.5. This is a consequence of Proposition 5.6, which is applied with a fixed
radius depending on W and s ∈ (0, 1), and a propagation of smallness argument: Indeed,
let

W̃ := {x ∈W : dist(x, ∂W ) ≥ r0/4},
with r0 > 0 being defined as the largest radius such that for some x0 ∈ W we have

Br0(x0) ⊂W . Then, covering W̃ by (finitely many) balls of a fixed radius r̄ > 0 (which
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depends on W and s ∈ (0, 1)) and by applying Proposition 5.6 in each of these balls, we
infer that

‖x
1−2s

2
n+1 w̃‖L2(W̃×[0,r̄])

≤ C‖x
1−2s

2
n+1 w̃‖

α
L2(W×[0,32r̄/c])‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w̃‖1−αH−s(W×{0})

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(W×{0}).

(5.60)

Here c > 0 denotes the constant from Proposition 5.6. Without loss of generality we may
assume that 32r̄

c ≤ C1, where C1 > 1 denotes the constant from Theorem 5.5. Hence,

using the assumptions in (5.2) together with the assumption that E
η > 1, we further

bound the right hand side of (5.60):

‖x
1−2s

2
n+1 w̃‖

α
L2(W×[0,32r̄/c])‖ lim

xn+1→0
x1−2s
n+1 ∂n+1w̃‖1−αH−s(W×{0})

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1w̃‖H−s(W×{0})

≤ C(Eαη1−α + η) ≤ C
(
Eαη1−α +

(
E

η

)α
η

)
= 2CEαη1−α.

(5.61)

Combining (5.60) with (5.61) thus implies

‖x
1−2s

2
n+1 w̃‖L2(W̃×[0,r̄])

≤ 2CEαη1−α.(5.62)

Next we seek to extend this estimate to a bound for ‖x
1−2s

2
n+1 w̃‖L2(W̃×[0,1])

. To this end,

we invoke the bulk three balls estimate from Proposition 5.4 along a chain of balls in the

vertical direction, which for x′ ∈ W̃ connects a point (x′, r̄/2) with a point with (x′, x̄n)
for some appropriate x̄n ≥ 1. More precisely, we choose points xj,` := (x̃j , x`) ∈ Rn+1

+ ,

j ∈ {1, . . . , j0}, ` ∈ {1, . . . , `0}, where x̃j ∈ Rn, x` ∈ R, x` ≥ 0 and j0, `0 ∈ N depend on

r̄, n, C1, W̃ , such that

• the normal components are of the form x` = r̄
2 + `r̃, where r̃ = min{r̄/20, (C1 −

1)/8},
• the set W̃ × [r̄/2, 1] is covered by choosing the horizontal components xj appro-

priately, i.e.

W̃ ×
[ r̄

2
, 1
]
⊂

⋃
j∈{1,...,j0},`∈{1,...,`0}

Br̃(x
j,`).

We note that due to our assumptions on W this can always be achieved by using finitely
many balls only, where the number of balls depends on n,W,C1.

Now for fixed j ∈ {1, . . . , j0}, we apply a chain of balls argument in the vertical
direction, i.e. using that Br̃(x

j,`) ⊂ B2r̃(x
j,`−1) and that by our choice of r̃ > 0 we have

‖x
1−2s

2
n+1 w̃‖L2(B+

4r̃(x
j,`)) ≤ E for j ∈ {1, . . . , j0}, ` ∈ {1, . . . , `0}, by Proposition 5.4 (where
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the exponent is now denoted by α̃ ∈ (0, 1)), we obtain

‖x
1−2s

2
n+1 ũ‖L2(B2r̃(xj,`)) ≤ CE

α̃‖x
1−2s

2
n+1 w̃‖

1−α̃
L2(B+

r̃ (xj,`))
≤ CEα̃‖x

1−2s
2

n+1 w̃‖
1−α̃
L2(B+

2r̃(x
j,`−1))

≤ C2Eα̃(1+(1−α̃))‖x
1−2s

2
n+1 w̃‖

(1−α̃)2

L2(B+
r̃ (xj,`−1))

≤ C`E
α̃
`−1∑
m=0

(1−α̃)m

‖x
1−2s

2
n+1 w̃‖

(1−α̃)`

L2(B+
r̃ (xj,1))

≤ 2CC`E
α̃
`−1∑
m=0

(1−α̃)m

Eα(1−α̃)`η(1−α̃)`(1−α) =: C̄Eβη1−β,

(5.63)

for some β ∈ (0, 1). In the last line we here used that Br̃(x
j,1) ⊂ W̃ × [0, r̄] and applied

the bound from (5.62). Summing over all balls, we thus infer that

‖x
1−2s

2
n+1 w̃‖L2(W̃×[r̄,1])

≤ CEβη1−β for some β ∈ (0, 1).

By combining this with (5.62) we obtain

‖x
1−2s

2
n+1 w̃‖L2(W̃×[0,1])

≤ CEγη1−γ =: ν,

where γ ∈ {α, β} is such that max{Eαη1−α, Eβη1−β} ≤ Eγη1−γ .
Thus, Theorem 5.5 is applicable and yields

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,1])

≤ CE 1

log
(
C E
ν

)µ ≤ CE 1

(1− γ)µ log
(
C E
η

)µ ,
which is the desired result.

Step 2: Argument for (5.5). In order to deduce (5.5), we argue analogously as for
(5.3), however on the level of the gradient. We first note that for any h > 0, by tangential
translation invariance, the tangential gradient u := ∇′w̃ also solves the equation

∇ · x1−2s
n+1 ∇u = 0 in Rn × (h,∞).

Hence, it is possible to propagate information by means of the three balls inequalities of
Propositions 5.3, 5.4. This then yields that

‖x
1−2s

2
n+1 u‖L2(Ω̂×[h,1])

E
≤ C

‖x
1−2s

2
n+1 u‖L2(W̃×[h,1])

E


αN

.(5.64)

The number N ∈ N denotes the number of balls that are necessary in the chain of balls;
it satisfies the same estimates as in the proof of Proposition 5.3. Using that u = ∇′w̃
and invoking the bulk-boundary interpolation estimate from Proposition 5.6, we obtain
that

‖x
1−2s

2
n+1 ∇

′w̃‖
L2(W̃×[h,1])

≤ η1−βEβ,(5.65)
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where β ∈ (0, 1) denotes the exponent from Proposition 5.6 (to distinguish it from the
exponent α ∈ (0, 1) of Propositions 5.3, 5.4). Inserting (5.65) into (5.64) yields

‖x
1−2s

2
n+1 ∇

′w̃‖
L2(Ω̂×[h,1])

≤ C
( η
E

)αN (1−β)
E.(5.66)

By the assumption (5.4) we further deduce that

‖x
1−2s

2
n+1 ∇

′w̃‖
L2(Ω̂×[0,h])

≤ C‖x
1−2s

2
−γ

n+1 ∇′w̃‖
L2(Ω̂×[0,h])

‖xγn+1‖L∞(Ω×[0,h])

≤ ChγE.
(5.67)

Therefore, as in (5.12) the combination of (5.66) and (5.67) entails that

‖x
1−2s

2
n+1 ∇

′w̃‖
L2(Ω̂×[0,1])

≤ C
( η
E

)(1−β)hC(W,Ω,n)|log(α)|
E + ChγE.

Optimizing in h > 0 as in the proof of Theorem 5.5 then yields the logarithmic stability
estimate.

In order to obtain a similar estimate for the normal part of the gradient, we observe
that the function ū := x1−2s

n+1 ∂n+1w̃ is a solution to the dual equation

∇ · x1−2s̄
n+1 ∇ū = 0 in Rn × (h,∞),

where s̄ = 1− s ∈ (0, 1) (c.f. Lemma 4.1). Therefore, as in (5.64)

‖x
1−2s̄

2
n+1 ū‖L2(Ω̂×[h,1])

E
≤ C

‖x
1−2s̄

2
n+1 ū‖L2(W̃×[h,1])

E


αN

.

Spelling out the definition of ū and recalling that s̄ = 1− s consequently gives

‖x
1−2s

2
n+1 ∂n+1w̃‖L2(Ω̂×[h,1])

E
≤ C

‖x
1−2s

2
n+1 ∂n+1w̃‖L2(W̃×[h,1])

E


αN

.

Thus, Proposition 5.6 again yields that

‖x
1−2s

2
n+1 ∂n+1w̃‖L2(Ω̂×[h,1])

≤ C
( η
E

)αN (1−β)
E.(5.68)

The argument is then concluded by combining (5.68) with

‖x
1−2s

2
n+1 ∂n+1w̃‖L2(Ω̂×[0,h])

≤ ChγE,

which follows from (5.4) similarly as in (5.67), and by optimizing in h > 0. �

6. Vishik-Eskin estimates

As a final technical step before the proofs of Theorems 1.3 and 1.4, in this section we
further relate the norms of the inhomogeneity and of the solution to (3.4). We will also
prove Vishik-Eskin type higher regularity estimates for equations involving potentials in
Z−s(Ω).

We first consider two functions w ∈ Hs
Ω

, v ∈ H−s(Ω) related by (3.4) and observe the
following comparability result for the norms:
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Lemma 6.1. Let s ∈ (0, 1) and suppose that the conditions in Assumption 3.1 hold. Let
w ∈ Hs

Ω
be an (energy) solution to (3.4), where v ∈ H−s(Ω) and q ∈ Z−s0 (Rn). Then,

there exists a constant C > 1 such that

C−1‖v‖H−s(Ω) ≤ ‖w‖Hs
Ω
≤ C‖v‖H−s(Ω).(6.1)

Proof. The second bound in (6.1) follows from the elliptic estimates in Lemma 2.6. It
hence suffices to consider the first bound. To this end we note that

‖v‖H−s(Ω) ≤ ‖(−∆)sw‖H−s(Ω) + ‖qw‖H−s(Ω)

≤ ‖(−∆)sw‖H−s(Rn) + ‖qw‖H−s(Ω)

≤ ‖w‖Hs
Ω

+ ‖qw‖H−s(Ω),

where we have used the compact support assumption of w in the last line. Duality
combined with a fractional Poincaré inequality (c.f. [RO16] and the references therein)
yields

‖qw‖H−s(Ω) = sup
‖ϕ‖Hs

Ω
=1

(qw, ϕ)L2(Rn) ≤ sup
‖ϕ‖Hs

Ω
=1
‖q‖Z−s(Rn)‖w‖Hs

Ω
‖ϕ‖Hs

Ω

≤ ‖q‖Z−s(Rn)‖w‖Hs
Ω
.

Therefore, ‖v‖H−s(Ω) ≤ C‖w‖Hs
Ω

, which concludes the argument. �

We remark that the estimates of Lemma 6.1 hold in particular, if q = 0.

As a final auxiliary result that will be used in the next section, we show that the
Vishik-Eskin estimates for operators with the µ-transmission property [VE65] (c.f. also
[Gr15], [Hö65]) remain valid within the framework of our multiplier spaces:

Lemma 6.2 (Vishik-Eskin). Let s ∈ (0, 1), δ ∈ (−1/2, 1/2), and let q ∈ Z−s0 (Rn) such
that ‖q‖Z−s+δ(Ω) < ∞. Suppose that Ω ⊂ Rn is a C∞ domain and F ∈ H−s+δ(Ω).
Assume that u is a solution of

((−∆)s + q)u = F in Ω,

u = 0 in Ωe.

Then we have that

‖u‖Hs+δ

Ω

≤ C‖F‖H−s+δ(Ω).

Proof. By Lemma 2.6 there exists a unique solution u ∈ Hs
Ω

to

((−∆)s + q)u = F in Ω, u = 0 in Ωe,

which satisfies the bound

‖u‖Hs
Ω
≤ C‖F‖H−s(Ω).(6.2)

The Vishik-Eskin estimates for the fractional Laplacian [Gr15, Theorem 3.1] assert that
the unique solution w to the equation

(−∆)sw = G in Ω, w = 0 in Ωe,
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satisfies

‖w‖Hs+δ

Ω

≤ C‖G‖H−s+δ(Ω).

We set G = −qu+ F , which implies that w = u, and use (6.2) to infer that

‖G‖H−s+δ(Ω) ≤ ‖qu‖H−s+δ(Ω) + ‖F‖H−s+δ(Ω)

≤ ‖q‖Z−s+δ(Ω)‖u‖Hs−δ
Ω

+ ‖F‖H−s+δ(Ω)

≤ C(‖q‖Z−s+δ(Ω) + 1)‖F‖H−s+δ(Ω).

This concludes the argument. �

7. Proofs of Theorems 1.3 and 1.4

In this section we present the proofs of our main quantitative uniqueness and approx-
imation results, i.e. of Theorems 1.3 and 1.4. In Section 8 we will then exploit these
in the context of the fractional Calderón problem and deduce the uniqueness and the
stability properties of Theorems 1.1 and 1.2.

We begin by discussing Theorem 1.3.

Proof of Theorem 1.3. Assume first that W ⊂ Ωe is a ball with W ∩ Ωe = ∅. Let
v ∈ L2(Ω) and let E, η be such that

‖v‖L2(Ω) ≤ E, w|Ωe = 0, ‖(−∆)sw‖H−s(W ) ≤ η,

where v, w are related through (3.4). Let w̃ be the Caffarelli-Silvestre extension of
w. Estimates for the Caffarelli-Silvestre extension and the fractional Dirichlet problem
(Lemmas 4.2 and 2.6) imply that, for any C1 > 0,

‖x
1−2s

2
n+1 w̃‖L2(Rn×[0,C1]) + ‖x

1−2s
2

n+1 ∇w̃‖L2(Rn+1
+ ) ≤ C‖w‖Hs(Rn) ≤ C‖v‖L2(Ω) ≤ CE.

Moreover, using the Vishik-Eskin estimates from Lemma 6.2, we notice that ‖v‖L2(Ω)

controls a norm of u which is (slightly) stronger than the Hs norm. Choose some

δ̃ ∈ (0, 1/2) with δ̃ ≤ min{δ, s}, where δ > 0 is the additional regularity modulus in the
condition q ∈ Z−s+δ(Ω) ≤M . Then also ‖q‖

Z−s+δ̃(Ω)
≤M , and Lemma 6.2 implies

‖w‖
Hs+δ̃(Rn)

≤ C‖v‖
H−s+δ̃(Ω)

≤ C‖v‖L2(Ω) ≤ CE,(7.1)

By virtue of the characterization of fractional Sobolev spaces by means of the Caffarelli-
Silvestre harmonic extension (c.f. Lemma 4.2) we have that for δ̃ as above

‖x
1−2s

2
−δ̃

n+1 ∇w̃‖L2(Rn+1
+ ) ≤ C‖w‖Hs+δ̃(Rn)

≤ C‖v‖L2(Ω) ≤ CE.

Thus the assumptions of Theorem 5.1 are satisfied. As a result, (5.3) and (5.5) hold.
Hence, we infer that for some constant C > 1

‖x
1−2s

2
n+1 w̃‖L2(Ω̂×[0,1])

+ ‖x
1−2s

2
n+1 ∇w̃‖L2(Ω̂×[0,1])

≤ C 1

log(C E
‖(−∆)sw‖H−s(W )

)µ
E.
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Combined with the localized trace estimate from Lemma 4.4, and taking η to be a cutoff
function as in that lemma, this further yields

‖w‖Hs
Ω

= ‖ηw‖Hs(Rn) ≤ C
1

log(C E
‖(−∆)sw‖H−s(W )

)µ
E.

Last but not least, an application of Lemma 6.1 finally entails that

‖v‖H−s(Ω) ≤ C
1

log(C E
‖(−∆)sw‖H−s(W )

)µ
E,

which yields the claim of Theorem 1.3 in the case that W ⊂ Ωe is a ball.
In the case that W ⊂ Ωe is not a ball, we consider an open ball V ⊂ W such that

V ∩ Ωe = ∅ and infer that

‖v‖H−s(Ω) ≤ C
1

log(C E
‖(−∆)sw‖H−s(V )

)µ
E

≤ C 1

log(C E
‖(−∆)sw‖H−s(W )

)µ
E,

which hence concludes the argument. �

Proof of Theorem 1.4. By combining Theorem 1.3 with Lemma 3.3 we directly infer the
conclusion of Theorem 1.4. �

Remark 7.1. We remark that the Vishik-Eskin estimates in [VE65], [Hö65], [Gr15] are
formulated for bounded C∞ domains (as these works rely on pseudodifferential tech-
niques). This explains our smoothness hypothesis on Ω in the statement of Theorems
1.2–1.4. In all other places of our proof, it is possible to argue with much less regularity
for the domain.

Remark 7.2. If additional a priori regularity is assumed for the potential q, e.g., if
q ∈ L∞(Ω), the approximation result of Theorem 1.4 can be directly invoked to deduce
a logarithmic stability result in H−s(Ω) (and in interpolation spaces between H−s(Ω)
and L∞(Ω)) for the fractional Calderón problem. As we are interested in the problem
involving the more general class of rough potentials q ∈ Z−s0 (Rn) with ‖q‖Z−s+δ(Ω) <∞,
we first need to derive an approximation result in slightly modified function spaces, c.f.
Lemma 8.2.

8. Proofs of Theorems 1.1 and 1.2

Last but not least, we return to the fractional Calderón problem and present the ar-
guments for Theorems 1.1 and 1.2. Here Theorem 1.1 follows with slight modifications
from the strategy introduced in [GSU16]. Theorem 1.2 relies on a suitably upgraded ver-
sion of the quantitative approximation result of Theorem 1.4 (c.f. Lemma 8.2). Finally,
we also show that it is possible to prove stability results with respect to other norms by
interpolation (c.f. Proposition 8.4).
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8.1. Proof of Theorem 1.1. We begin by discussing the injectivity result of Theorem
1.1. Here we rely on the functional analytic set-up from Section 2.

We start by proving a qualitative approximation result. Similarly as in [GSU16] this
will imply the uniqueness result of Theorem 1.1 for qj ∈ Z−s0 (Rn).

Lemma 8.1. Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let q ∈ Z−s0 (Rn)
satisfy (1.1). Let also W be any open subset of Ωe. Consider the set

R = {Pqf − f ; f ∈ C∞c (W )}

where Pq is the Poisson operator from (2.2). Then R is dense in H̃s(Ω).

Proof. Note first that R ⊂ H̃s(Ω). By the Hahn-Banach theorem, it is enough to show

that any F ∈ (H̃s(Ω))∗ with F (v) = 0 for all v ∈ R must satisfy F ≡ 0. If F is such a
functional, then

(8.1) F (Pqf − f) = 0, f ∈ C∞c (W ).

We claim that

(8.2) F (Pqf − f) = −Bq(ϕ, f), f ∈ C∞c (W ),

where ϕ ∈ H̃s(Ω) is the solution of

((−∆)s + q)ϕ = F in Ω, ϕ|Ωe = 0,

which is a well-posed problem by Lemma 2.6. In other words, Bq(ϕ,w) = F (w) for

any w ∈ H̃s(Ω). To prove (8.2), let f ∈ C∞c (W ), and let uf = Pqf ∈ Hs(Rn). Then

uf − f ∈ H̃s(Ω) and

F (Pqf − f) = Bq(ϕ, uf − f) = −Bq(ϕ, f).

In the last line, we used that uf is a solution and ϕ ∈ H̃s(Ω).
Combining (8.1) and (8.2), we have that

Bq(ϕ, f) = 0, f ∈ C∞c (W ).

Since f vanishes outside W and ϕ ∈ H̃s(Ω) (we may assume Ω ∩W = ∅), this implies
that

0 = ((−∆)s/2ϕ, (−∆)s/2f)Rn = ((−∆)sϕ, f)Rn , f ∈ C∞c (W ).

In particular, ϕ ∈ Hs(Rn) satisfies

ϕ|W = (−∆)sϕ|W = 0.

Uniqueness for this problem (see [GSU16, Theorem 1.2]) implies that ϕ ≡ 0, and thus
also F ≡ 0. �

With this at hand, the desired injectivity result follows as in [GSU16]:

Proof of Theorem 1.1. Without loss of generality, we may assume that one has (W 1 ∪
W 2)∩Ω = ∅ and W 1∩W 2 = ∅ (as we can always shrink the sets W1 or W2 if necessary).
Using the disjointness of the sets W 1,W 2 and the assumption that Λq1f |W2 = Λq2f |W2 ,
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the integral identity of Lemma 2.7 implies that for any functions f1 ∈ C∞c (W1), f2 ∈
C∞c (W2) we have

(mq1−q2(u1), u2)L2(Rn) = 0,(8.3)

whenever u1, u2 ∈ Hs(Rn) are solutions to

(−∆)sui +mqi(ui) = 0 in Ω, ui − fi ∈ H̃s(Ω).

Given arbitrary functions v1, v2 ∈ H̃s(Ω), Lemma 8.1 asserts that it is possible to find

sequences of controls (f j1 ) ⊂ C∞c (W1), (f j2 ) ⊂ C∞c (W2) and associated sequences of

solutions (uj1), (uj2) ⊂ Hs(Rn) with the properties that for i = 1, 2,

• the functions uji solve (−∆)suji +mqiu
j
i = 0 in Ω,

• uji − f
j
i ∈ H̃s(Ω),

• and

uj1 = f j1 + v1 + rj1, uj2 = f j2 + v2 + rj2,

with rj1, r
j
2 → 0 in H̃s(Ω).

Inserting these solutions in (8.3), using the support conditions, and taking the limit as
j →∞ then entails that

(mq1−q2(v1), v2)L2(Rn) = 0,

If ϕ is any function in C∞c (Ω), then choosing v1 = ϕ and v2 ∈ C∞c (Ω) so that v2 = 1
near supp(ϕ) implies that (q1 − q2, ϕ)Rn = 0. Varying ϕ yields that q1|Ω = q2|Ω as
required. �

8.2. Proof of Theorem 1.2. We deduce the stability estimate of Theorem 1.2 under
the a priori assumptions that q ∈ Z−s0 (Rn) and ‖q‖Z−s+δ(Ω) <∞. To this end, we begin
by first reducing the necessary controllability result to a quantitative unique continuation
estimate (this is analogous to the discussion in Section 3). In the second step, we show
that the quantitative unique continuation property holds true.

Lemma 8.2. Let 0 < s < 1, let Ω ⊂ Rn be an open, bounded Lipschitz set and let
W ⊂ Ωe be an open Lipschitz set with Ω ∩ W = ∅. Suppose that q ∈ Z−s0 (Rn) and

0 < δ < s, and assume that for any v ∈ Hs−δ
Ω

it holds that

‖v‖Hs−2δ

Ω

≤ C

log

(
C

‖v‖
Hs−δ

Ω
‖(−∆)sw‖H−s(W )

)σ(δ)
‖v‖Hs−δ

Ω

.(8.4)

where w ∈ Hs
Ω

is the solution of

((−∆)s + q)w = rΩv in Ω, w|Ωe = 0,

Then for any v̄ ∈ Hs
Ω

and for any ε > 0, there exists fε ∈ Hs
W

such that

‖Pqfε − fε − v̄‖Hs−δ
Ω

≤ ε‖v̄‖Hs
Ω
, ‖fε‖Hs

W
≤ CeC̃ε−µ(δ)‖v̄‖Hs−δ

Ω

.

where C̃ = C1/σ(δ) and µ(δ) = 1/σ(δ).
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Remark 8.3. In Lemma 8.2, exactly like in Lemma 8.1, the expression Pqf − f should
be thought of as Pqf |Ω, since solutions to fractional Dirichlet problems have the form
Pqf = f + v where f ∈ Hs

Ωe
is the exterior Dirichlet value and v ∈ Hs

Ω
. Indeed, if

additionally s− δ 6= 1/2, Remark 2.1 implies that

‖Pqfε|Ω − v̄|Ω‖Hs−δ(Ω) ∼ ‖Pqfε − fε − v̄‖Hs−δ
Ω

(equivalent norms).

In fact one has ‖Pqfε|Ω − v̄|Ω‖Hs−δ(Ω) ≤ ‖Pqfε − fε − v̄‖Hs−δ
Ω

by definition of Hs−δ(Ω).

Thus the conclusion of Lemma 8.2 also implies that

‖Pqfε|Ω − v̄|Ω‖Hs−δ(Ω) ≤ ε‖v̄‖Hs
Ω
, ‖fε‖Hs

W
≤ CeC̃ε−µ(δ)‖v̄‖Hs−δ

Ω

.

Proof. We argue as in the proof of Lemma 3.3. To this end, we redefine the operator A
from Section 3.1 as

A : Hs
W
→ Hs−δ

Ω
, Af = j(Pqf − f)

where j is the compact Sobolev embedding Hs
Ω
→ Hs−δ

Ω
, and Pqf − f (which again

should be thought of as Pqf |Ω, see Remark 8.3) is in the space H̃s(Ω) = Hs
Ω

by Lemma

2.6. That is, we consider A as taking values in Hs−δ
Ω

instead of L2(Ω). The operator A

is also compact, and injectivity is inherited from the mapping properties as an operator
to L2(Ω). Hence we again obtain an eigenvalue system and orthonormal eigenbasis
(µj , ϕj) ∈ R+×Hs

W
of the operator A∗A. By an argument as in Lemma 3.2, using Lemma

8.1, the set {wj} defined via wj = µ
−1/2
j Aϕj is a complete orthonormal basis of Hs−δ

Ω
.

Thus, we obtain a singular value decomposition (σj , ϕj , wj) ∈ R×Hs
W
×Hs−δ

Ω
associated

with A, where σj = µ
1/2
j . Observe also that, as in Remark 3.5, ‖(−∆)sw‖H−s(W ) =

‖A∗v‖Hs
W

, so the assumption (8.4) implies that for any v ∈ Hs−δ
Ω

one has

‖v‖Hs−2δ

Ω

≤ C

log

(
C
‖v‖

Hs−δ
Ω

‖A∗v‖Hs
W

)σ(δ)
‖v‖Hs−δ

Ω

.(8.5)

Fix v̄ ∈ Hs
Ω

and ε > 0. If α > 0, we define rα and Rαv̄ as in the proof of Lemma 3.3

(but with respect to the Hs−δ
Ω

inner product), i.e.,

rα :=
∑
σj≤α

(v̄, wj)Hs−δ
Ω

wj ∈ Hs−δ
Ω

, Rαv̄ :=
∑
σj>α

1

σj
(v̄, wj)Hs−δ

Ω

ϕj ∈ Hs
W
.

As an analogue of (3.3) we deduce that

‖Rαv̄‖2Hs
W
≤ 1

α2
‖v̄‖2

Hs−δ
Ω

.(8.6)

Also, using (8.5), we obtain as in Lemma 3.3 that

‖rα‖Hs−2δ

Ω

≤ C

|log (Cα)|σ(δ)
‖rα‖Hs−δ

Ω

.
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Concerning the error estimate, we use the previous estimate to infer that

‖A(Rαv̄)− v̄‖2
Hs−δ

Ω

=
∑
σj≤α

|(v̄, wj)Hs−δ
Ω

|2 = (v̄, rα)Hs−δ
Ω

= (v̄, rα)Hs−δ(Rn)

≤ ‖v̄‖Hs(Rn)‖rα‖Hs−2δ(Rn) = ‖v̄‖Hs
Ω
‖rα‖Hs−2δ

Ω

≤ ‖v̄‖Hs
Ω

C

|log (Cα)|σ(δ)
‖rα‖Hs−δ

Ω

.

Noting that ‖rα‖Hs−δ
Ω

= ‖A(Rαv̄)− v̄‖Hs−δ
Ω

yields

(8.7) ‖A(Rαv̄)− v̄‖Hs−δ
Ω

≤ C

|log (Cα)|σ(δ)
‖v̄‖Hs

Ω
.

Choosing fε = Rαv̄ where α is chosen so that C
|log(Cα)|σ(δ) = ε, and combining (8.6) and

(8.7) implies the desired result. �

In order to conclude the argument for Theorem 1.2, it thus suffices to prove the quan-
titative estimate from (8.4). This follows by interpolating the estimate from Theorem
1.3 and a trivial estimate.

Proof of Theorem 1.2. Step 1: Proof of (8.4). We first note that (8.4) involves the

Hs−δ
Ω

norm, but Theorem 1.3 involves the H−s(Ω) norm and these norms may not be

immediately interpolated. Thus we do the argument in two parts. (Alternatively, we
could assume that our Sobolev indices are not half-integers and then use Remark 2.1).

First, note that for any v ∈ Hs−δ
Ω

with ‖v|Ω‖L2(Ω) ≤ E, the proof of Theorem 1.3

implies that (for some σ > 0)

‖v|Ω‖H−s(Ω) ≤ C
1

log(C E
‖(−∆)sw‖H−s(W )

)σ
E

where w ∈ Hs
Ω

solves ((−∆)s + q)w = rΩv in Ω with w|Ωe = 0. Interpolating this

estimate with ‖v|Ω‖L2(Ω) ≤ E gives, for 0 < θ < 1,

‖v|Ω‖H−θs(Ω) ≤ Cθ
1

log(C E
‖(−∆)sw‖H−s(W )

)θσ
E.

Choose θ := 1/2. Then 0 < θs < 1/2, and H−θs(Ω) = H−θs0 (Ω) = H−θs
Ω

with equivalent

norms [CHM17, Corollary 3.29 and Lemma 3.31]. This implies that

‖v‖H−θs
Ω

≤ C‖v|Ω‖H−θs(Ω) ≤ C
1

log(C E
‖(−∆)sw‖H−s(W )

)θσ
E.

Now, if s− 2δ ≤ −θs, on the one hand, we have

‖v‖Hs−2δ

Ω

≤ ‖v‖H−θs
Ω

≤ C 1

log(C E
‖(−∆)sw‖H−s(W )

)θσ
E,

which implies the estimate (8.4).
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If on the other hand, s − 2δ > −θs, we choose E := ‖v‖Hs−δ
Ω

≥ ‖v|Ω‖L2(Ω) and

interpolate the previous estimate with the trivial estimate ‖v‖Hs−δ
Ω

≤ ‖v‖Hs−δ
Ω

. This

gives

‖v‖Hs−2δ

Ω

≤ C 1

log(C
‖v‖

Hs−δ
Ω

‖(−∆)sw‖H−s(W )
)σ̃

‖v‖Hs−δ
Ω

for some σ̃ = a(s, δ)σ > 0. This concludes the argument for (8.4).

Step 2: Proof of Theorem 1.2. Concatenating all the previous results then yields the
desired stability estimate for (nearly) scale invariant norms. To this end, without loss
of generality, we again assume that W1 and W2 are open balls with W 1 ∩W 2 = ∅ and
(W 1∪W 1)∩Ω = ∅. Moreover, by possibly decreasing the value of δ > 0, we can without
loss of generality assume that 0 < δ < s.

We fix ε > 0 and two (arbitrary) functions v1, v2 ∈ C∞c (Ω) with ‖vj‖Hs(Rn) = 1. By
Step 1 and Lemma 8.2, there exist functions fj ∈ Hs

W j
and solutions uj = Pqjfj in

Hs(Rn) of ((−∆)s + qj)uj = 0 in Ω with uj |Ωe = fj , so that

(8.8) uj = fj + vj + rj , ‖rj‖Hs−δ
Ω

≤ ε, ‖fj‖Hs
Wj

≤ CeCε−µ .

Here µ = 1/σ̃, and we used that ‖vj‖Hs−δ
Ω

≤ ‖vj‖Hs
Ω

= 1. Inserting these solutions uj

into the integral identity from Lemma 2.7, we obtain that∫
Ω

(q1 − q2)v1v2 dx = ((Λq1 − Λq2)f1, f2)Rn −
∫

Ω
(q1 − q2)(v2r1 + v1r2 + r1r2) dx.

Thus, using the bounds
∫

Ω qjvw dx ≤ ‖qj‖Z−s+δ(Ω)‖v‖Hs−δ
Ω

‖w‖Hs−δ
Ω

and (8.8),∣∣∣∣∫
Ω

(q1 − q2)v1v2 dx

∣∣∣∣ ≤ ‖Λq1 − Λq2‖∗‖f1‖Hs
W1

‖f2‖Hs
W2

+ 2M(‖r1‖Hs−δ
Ω

+ ‖r2‖Hs−δ
Ω

+ ‖r1‖Hs−δ
Ω

‖r2‖Hs−δ
Ω

)

≤ C2‖Λq1 − Λq2‖∗e2Cε−µ + 4Mε.

Choosing

ε = | log(‖Λq1 − Λq2‖∗)|
− 1
µ ,

and recalling the definition of the norm of Z−s(Ω) yields the desired result. �

8.3. Stability in other norms. Last but not least, we show that it is also possible to
obtain stability results in other norms by means of interpolation. As an example of this,
we prove the following result:

Proposition 8.4. Let s ∈ (0, 1). Let Ω ⊂ Rn, n ≥ 2, be a bounded C∞ domain and let
W1,W2 be open subsets of Ωe. Assume that q1, q2 ∈ Z−s0 (Rn) and that for some δ > 0
we have

‖qj‖W δ, n2s (Ω)
≤M, j = 1, 2.(8.9)
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Suppose further that q1, q2 satisfy (1.1). Then,

‖q1 − q2‖L n
2s (Ω)

≤ ω̃(‖Λq1 − Λq2‖∗),

where for some constants C > 1 and σ > 0 which depend on Ω, n, s,W1,W2, δ,M we
have

ω̃(t) ≤ C| log(t)|−σ for t ∈ (0, 1).

Proof. The proof follows from the stability result of Theorem 1.2 by interpolation with
the a priori bound (8.9). Noting that ‖qj‖Z−s+δ̃(Ω)

≤ ‖qj‖W δ, n2s (Ω)
≤ M for some δ̃ > 0

(this follows for instance by taking a W δ, n
2s (Rn) extension of qj and using Lemma 2.2),

we conclude that Theorem 1.2 is applicable and hence Lemma 2.2 implies that for any
fixed ε > 0

‖dκ(q1 − q2)‖H−s(Ω) ≤ C‖q1 − q2‖Z−s(Ω) ≤ Cω(‖Λq1 − Λq2‖∗),(8.10)

where

κ = κ(s) =

{
0 if s ∈ (0, 1/2),
s− 1/2 + ε if s ∈ [1/2, 1).

Step 1: The case 0 < s < 1/2. In this case, (8.10) yields

‖q1 − q2‖H−s(Ω) ≤ Cω(‖Λq1 − Λq2‖∗).

Moreover, the Sobolev embedding W δ, n
2s (Ω) ⊂ W

σ, n
2s−(δ−σ) (Ω) (where we may assume

that 0 < δ < 2s) gives

‖q1 − q2‖
W
σ, n

2s−(δ−σ) (Ω)
≤ CσM, 0 ≤ σ ≤ δ.

The complex interpolation space [H−s(Ω),W
σ, n

2s−(δ−σ) (Ω)] s
s+σ

is Lpσ(Ω), where pσ →
n

2s−δ as σ → 0. Choosing σ > 0 so small that pσ ≥ n
2s , this gives

‖q1 − q2‖L n
2s (Ω)

≤ C‖q1 − q2‖Lpσ (Ω) ≤ C‖q1 − q2‖
σ
s+σ

H−s(Ω)
‖q1 − q2‖

s
s+σ

W
σ, n

2s−(δ−σ) (Ω)

≤ Cω(‖Λq1 − Λq2‖∗)
σ
s+σM

s
s+σ .

This proves the result when 0 < s < 1/2.
From now on we assume that 1/2 ≤ s < 1.

Step 2: First interpolation. In the case 1/2 ≤ s < 1, (8.10) yields

‖dκ(q1 − q2)‖H−s(Ω) ≤ Cω(‖Λq1 − Λq2‖∗).

By Sobolev extension, there exists q̃ ∈W δ, n
2s (Rn) satisfying q̃|Ω = q1−q2 and ‖q̃‖

W δ, n2s (Rn)
≤

C‖q1 − q2‖W δ, n2s (Ω)
. Assuming (as we may) that 0 < δ < κ, so that multiplication by

functions in Bκ
∞∞ is a continuous map on W δ,r for any r [Tr92, Section 4.2.2], and using

Lemma 2.3 gives

‖dκ(q1 − q2)‖
W δ, n2s (Ω)

≤ ‖(e+d
κ)q̃‖

W δ, n2s (Rn)
≤ C‖e+d

κ‖Bκ∞∞‖q̃‖W δ, n2s (Rn)

≤ CM.
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Now using Sobolev embedding and interpolating the last two estimates exactly as in
Step 1 implies that, for 0 ≤ σ ≤ δ,

(8.11) ‖dκ(q1 − q2)‖Lpσ (Ω) ≤ CM,σω(‖Λq1 − Λq2‖∗)
σ
s+σ .

Step 3: Lp interpolation. Write f := q1 − q2. We first observe that the Sobolev
inequality implies

‖f‖
L

n
2s−δ (Ω)

≤ C‖f‖
W δ, n2s (Ω)

≤ CM.

Choosing θ = θn,s,σ ∈ (0, 1) so that the interpolation space [L1(Ω), L
n

2s−δ (Ω)]θ is equal

to L
n
2s (Ω), we obtain that

‖f‖
L
n
2s (Ω)

≤ ‖f‖1−θ
L1(Ω)

‖f‖θ
L

n
2s−δ (Ω)

≤ CM‖f‖1−θL1(Ω)
.

It is thus enough to estimate ‖f‖L1(Ω). Next we observe that for any µ ∈ (0, 1) one has

‖f‖L1(Ω) = ‖(dκ|f |)µ(d
− κµ

1−µ |f |)1−µ‖L1(Ω).

We wish to use Hölder’s inequality with exponents p = pσ
µ and q = pσ

pσ−µ , which is

possible whenever 0 < µ ≤ pσ. Doing this implies

‖f‖L1(Ω) ≤ ‖dκf‖
µ
Lpσ ‖d

− κµ
1−µ f‖1−µ

L
pσ(1−µ)
pσ−µ

.

Combining the estimates in this step yields that, for 0 < µ ≤ pσ,

(8.12) ‖q1 − q2‖L n
2s (Ω)

≤ CM‖dκ(q1 − q2)‖(1−θ)µLpσ ‖d−
κµ

1−µ (q1 − q2)‖(1−θ)(1−µ)

L
pσ(1−µ)
pσ−µ

.

Step 4: Conclusion. We first fix some σ > 0 close to 0, and note that inserting (8.11)
in (8.12) yields

‖q1 − q2‖L n
2s (Ω)

≤ Cω(‖Λq1 − Λq2‖∗)
(1−θ)σ
s+σ

µ‖d−
κµ

1−µ (q1 − q2)‖(1−θ)(1−µ)

L
pσ(1−µ)
pσ−µ

Next we use that for µ > 0 small enough, one has pσ(1−µ)
pσ−µ ≤

n
2s − γ for some fixed γ > 0

with n
2s − γ > 1 (here we use that n ≥ 2 and 0 < s < 1). Consequently

‖d−
κµ

1−µ (q1 − q2)‖
L
pσ(1−µ)
pσ−µ

≤ C‖d−
κµ

1−µ (q1 − q2)‖
L
n
2s−γ(Ω)

≤ C‖d−
κµ

1−µ ‖Lq(Ω)‖q1 − q2‖L n
2s (Ω)

for some q = qn,s,γ > 1. Now we fix µ > 0 so small that ‖d−
κµ

1−µ ‖Lq(Ω) < ∞. Then
combining the previous two estimates yields

‖q1 − q2‖L n
2s (Ω)

≤ Cω(‖Λq1 − Λq2‖∗)µ̃

for some µ̃ > 0, as required. �
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9. Appendix

In order to provide a self-contained argument we finally recall the proof of the Carle-
man estimate (5.7).

Proof of (5.7). We argue by conjugation and separation into a symmetric and an anti-
symmetric part.

We first introduce conformal coordinates (t, θ), where |x| = et, θ = x
|x| . With respect

to these the operator ∇ · x1−2s
n+1 ∇ turns into

e−(1+2s)t[θ1−2s
n ∂2

t + θ1−2s
n (n− 2s)∂t +∇Sn · θ1−2s

n ∇Sn ].(9.1)

Conjugating (9.1) with e−
n−2s

2
tθ

1−2s
2

n (i.e. setting w = e−
n−2s

2
tθ

2s−1
2

n ¯̄w) yields(
∂2
t −

(n− 2s)2

2

)
+ θ

2s−1
2

n ∇Sn · θ1−2s
n ∇Snθ

1−2s
2

n(9.2)

for the expression for the bulk operator. We conjugate the operator from (9.2) with the
function eτφ (i.e. setting ¯̄w = e−τφw̄), where φ is an only t dependent weight function.
This yields

Lφ := ∂2
t + τ2(φ′)2 − (n− 2s)2

4
+ θ

2s−1
2

n ∇Sn · θ1−2s
n ∇Snθ

1−2s
2

n − 2τφ′∂t − τφ′′.(9.3)

Defining

S := ∂2
t + τ2(φ′)2 − (n− 2s)2

4
+ θ

2s−1
2

n ∇Sn · θ1−2s
n ∇Snθ

1−2s
2

n ,

A := −2τφ′∂t − τφ′′,

as the (up to boundary contributions) symmetric and antisymmetric parts of the oper-
ator, we infer that for all functions w̄, which are compactly supported in Sn+ × (0,∞)

‖Lφw̄‖2L2(Sn+×R) = ‖Sw̄‖2Sn+×(0,∞) + ‖Aw̄‖2Sn+×R + 2(Sw̄,Aw̄)L2(Sn+×R)

= ‖Sw̄‖2Sn+×(0,∞) + ‖Aw̄‖2Sn+×R + 2([S,A]w̄, w̄)L2(Sn+×R)

+ boundary contributions

≥ ‖Sw̄‖2Sn+×(0,∞) + ‖Aw̄‖2Sn+×R
+ τ3‖(φ′′)1/2φ′w̄‖2L2(Sn+×R) + τ‖(φ′′)1/2∇Sn+w̄‖

2
L2(Sn+×R)

+ τ‖(φ′′)1/2∂tw̄‖2L2(Sn+×R).

Here we used our choice of φ to absorb the non-positive error terms and exploited the
symmetric part of the operator to obtain control of the full gradient. Moreover, we used
that the boundary contributions vanished by virtue of the assumption that w = 0 on
Rn × {0}. �
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