dc.contributor.author | Harrach, Bastian | |
dc.contributor.author | Pohjola, Valter | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2019-08-01T10:25:56Z | |
dc.date.available | 2019-08-01T10:25:56Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Harrach, B., Pohjola, V., & Salo, M. (2019). Monotonicity and local uniqueness for the Helmholtz equation. <i>Analysis and PDE</i>, <i>12</i>(7), 2019. <a href="https://doi.org/10.2140/apde.2019.12.1741" target="_blank">https://doi.org/10.2140/apde.2019.12.1741</a> | |
dc.identifier.other | CONVID_32197907 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/65183 | |
dc.description.abstract | This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schrödinger) equation (1 + k2q)u = 0 in a bounded domain for fixed nonresonance frequency k > 0 and real-valued scattering coefficient function q. We show a monotonicity relation between the scattering coefficient q and the local Neumann-to-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicitybased characterization of scatterers from partial boundary data. We also obtain the local uniqueness result that two coefficient functions q1 and q2 can be distinguished by partial boundary data if there is a
neighborhood of the boundary part where q1 ≥ q2 and q1 6≡ q2. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Mathematical Sciences Publishers | |
dc.relation.ispartofseries | Analysis and PDE | |
dc.rights | In Copyright | |
dc.subject.other | inverse coefficient problems | |
dc.subject.other | Helmholtz equation | |
dc.subject.other | stationary Schrödinger equation | |
dc.subject.other | monotonicity, localized potentials | |
dc.title | Monotonicity and local uniqueness for the Helmholtz equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201908013745 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2019 | |
dc.relation.issn | 2157-5045 | |
dc.relation.numberinseries | 7 | |
dc.relation.volume | 12 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Mathematical Sciences Publishers | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 284715 HY | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 307023 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE | |
dc.subject.yso | inversio-ongelmat | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.2140/apde.2019.12.1741 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | FP7 (EU's 7th Framework Programme) | en |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | EU:n 7. puiteohjelma (FP7) | fi |
jyx.fundinginformation | Pohjola and Salo were supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, grant number 284715) and by an ERC Starting Grant (grant number 307023). | |
dc.type.okm | A1 | |