Dimension Bounds in Monotonicity Methods for the Helmholtz Equation
Harrach, B., Pohjola, V., & Salo, M. (2019). Dimension Bounds in Monotonicity Methods for the Helmholtz Equation. SIAM Journal on Mathematical Analysis, 51(4), 2995-3019. https://doi.org/10.1137/19M1240708
Julkaistu sarjassa
SIAM Journal on Mathematical AnalysisPäivämäärä
2019Tekijänoikeudet
© 2019 Society for Industrial and Applied Mathematics
The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial.
Julkaisija
Society for Industrial and Applied MathematicsISSN Hae Julkaisufoorumista
0036-1410Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32199156
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; ERC Consolidator Grant; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
The work of the third author was supported by the Academy of Finland (Centre of Excellence in Inverse modeling and Imaging) grants 312121, 309963, and by the European Research Council under Horizon 2020 grant ERC CoG 770924Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Monotonicity and local uniqueness for the Helmholtz equation
Harrach, Bastian; Pohjola, Valter; Salo, Mikko (Mathematical Sciences Publishers, 2019)This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schrödinger) equation (1 + k2q)u = 0 in a bounded domain for fixed nonresonance frequency k > 0 and real-valued ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ... -
On Positivity Sets for Helmholtz Solutions
Kow, Pu-Zhao; Salo, Mikko; Shahgholian, Henrik (Springer, 2023)We address the question of finding global solutions of the Helmholtz equation that are positive in a given set. This question arises in inverse scattering for penetrable obstacles. In particular, we show that there are ... -
Inverse problems for p-Laplace type equations under monotonicity assumptions
Guo, Changyu; Kar, Manas; Salo, Mikko (EUT Edizioni Universita di Trieste, 2016)We consider inverse problems for p-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying σ1 ≥ σ2 and having the same nonlinear Dirichlet-to-Neumann map ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.