Show simple item record

dc.contributor.authorHarrach, Bastian
dc.contributor.authorPohjola, Valter
dc.contributor.authorSalo, Mikko
dc.date.accessioned2019-08-01T10:25:56Z
dc.date.available2019-08-01T10:25:56Z
dc.date.issued2019
dc.identifier.citationHarrach, B., Pohjola, V., & Salo, M. (2019). Monotonicity and local uniqueness for the Helmholtz equation. <i>Analysis and PDE</i>, <i>12</i>(7), 2019. <a href="https://doi.org/10.2140/apde.2019.12.1741" target="_blank">https://doi.org/10.2140/apde.2019.12.1741</a>
dc.identifier.otherCONVID_32197907
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65183
dc.description.abstractThis work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schrödinger) equation (1 + k2q)u = 0 in a bounded domain for fixed nonresonance frequency k > 0 and real-valued scattering coefficient function q. We show a monotonicity relation between the scattering coefficient q and the local Neumann-to-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicitybased characterization of scatterers from partial boundary data. We also obtain the local uniqueness result that two coefficient functions q1 and q2 can be distinguished by partial boundary data if there is a neighborhood of the boundary part where q1 ≥ q2 and q1 6≡ q2.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMathematical Sciences Publishers
dc.relation.ispartofseriesAnalysis and PDE
dc.rightsIn Copyright
dc.subject.otherinverse coefficient problems
dc.subject.otherHelmholtz equation
dc.subject.otherstationary Schrödinger equation
dc.subject.othermonotonicity, localized potentials
dc.titleMonotonicity and local uniqueness for the Helmholtz equation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201908013745
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2019
dc.relation.issn2157-5045
dc.relation.numberinseries7
dc.relation.volume12
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Mathematical Sciences Publishers
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber284715 HY
dc.relation.grantnumber307023
dc.relation.grantnumber307023
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE
dc.subject.ysoinversio-ongelmat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.2140/apde.2019.12.1741
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundinginformationPohjola and Salo were supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, grant number 284715) and by an ERC Starting Grant (grant number 307023).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright