Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs
Martinella, C., Stark, R., Ziemann, T., Alia, R. G., Kadi, Y., Grossner, U., & Javanainen, A. (2019). Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs. IEEE Transactions on Nuclear Science, 66(7), 1702-1709. https://doi.org/10.1109/TNS.2019.2907669
Published in
IEEE Transactions on Nuclear ScienceAuthors
Kadi, Y. |
Date
2019Copyright
© 2018 IEEE.
High sensitivity of SiC power MOSFETs has been
observed under heavy ion irradiation, leading to permanent
increase of drain and gate leakage currents. Electrical postirradiation analysis confirmed the degradation of the gate oxide
and the blocking capability of the devices. At low drain bias, the
leakage path forms between drain and gate, while at higher bias
the heavy ion induced leakage path is mostly from drain to source.
An electrical model is proposed to explain the current transport
mechanism for heavy-ion degraded SiC power MOSFETs.
Publisher
Institute of Electrical and Electronics EngineersISSN Search the Publication Forum
0018-9499Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28991108
Metadata
Show full item recordCollections
Additional information about funding
ETH Zurich Foundation; 10.13039/501100000844-European Space Agency;License
Related items
Showing items with similar title or keywords.
-
Proton Irradiation-Induced Reliability Degradation of SiC Power MOSFET
Niskanen, Kimmo; Kettunen, Heikki; Söderström, Daniel; Rossi, Mikko; Jaatinen, Jukka; Javanainen, Arto (Institute of Electrical and Electronics Engineers (IEEE), 2023)The effect of 53 MeV proton irradiation on the reliability of silicon carbide power MOSFETs was investigated. Post-irradiation gate voltage stress was applied and early failures in time-dependent dielectric breakdown (TDDB) ... -
Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs
Niskanen, Kimmo; Kettunen, Heikki; Lahti, Mikko; Rossi, Mikko; Jaatinen, Jukka; Söderström, Daniel; Javanainen, Arto (Institute of Electrical and Electronics Engineers (IEEE), 2023)The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ... -
Single-Event Burnout Mechanisms in SiC Power MOSFETs
Witulski, Arthur F.; Ball, Dennis R.; Galloway, Kenneth F.; Javanainen, Arto; Lauenstein, Jean-Marie; Sternberg, Andrew L.; Schrimpf, Ronald D. (Institute of Electrical and Electronics Engineers, 2018)Heavy ion-induced single-event burnout (SEB) is investigated in high-voltage silicon carbide power MOSFETs. Experimental data for 1200-V SiC power MOSFETs show a significant decrease in SEB onset voltage for particle linear ... -
Heavy-ion induced single event effects and latent damages in SiC power MOSFETs
Martinella, C.; Natzke, P.; Alia, R.G.; Kadi, Y.; Niskanen, K.; Rossi, M.; Jaatinen, J.; Kettunen, H.; Tsibizov, A.; Grossner, U.; Javanainen, A. (Elsevier, 2022)The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to ... -
Isotopic Enriched and Natural SiC Junction Barrier Schottky Diodes under Heavy Ion Irradiation
Roed, Ketil; Eriksen, Dag Oistein; Ceccaroli, Bruno; Martinella, Corinna; Javanainen, Arto; Reshanov, Sergey; Massetti, Silvia (Institute of Electrical and Electronics Engineers (IEEE), 2022)The radiation tolerance of isotopic enriched and natural silicon carbide junction barrier Schottky diodes are compared under heavy ion irradiation. Both types of devices experience leakage current degradation as well as ...