Show simple item record

dc.contributor.advisorLehtonen, Ari
dc.contributor.authorOjaniemi, Jenna
dc.date.accessioned2019-06-20T06:01:15Z
dc.date.available2019-06-20T06:01:15Z
dc.date.issued2019
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64737
dc.description.abstractTutkielman tarkoituksena on Pellin yhtälön ratkaiseminen ja aritmetiikan peruslauseen voimassaolon tutkiminen algebrallisten kokonaislukujen muodostamissa renkaissa \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{-3}],\mathbb{Z}[\sqrt{\zeta_3}]$ ja $\mathbb{Z}[\sqrt{-5}]. Aritmetiikan peruslauseella tarkoitetaan yleisimmin positiivisten kokonaislukujen yksikäsitteistä alkulukuhajotelmaa. Pellin yhtälön ratkaisussa käytetyt tavat käsitellä algebrallisia kokonaislukuja ovat apuna aritmetiikan peruslauseen yleistämisessä muihin lukuluokkiin. Tutkielmassa tutustutaan myös ketjumurtolukujen tarjoamaan ratkaisualgoritmiin Pellin yhtälölle. Lisäksi tutkielmassa käsitellään ideaalien teoriaa, sillä jos varsinaista määritelmän mukaista yksikäsitteistä tekijöihinjakoa ei pystytä renkaalle yleistämään, voidaan alkutekijähajotelmaa tarkastella alkuideaalien avulla. Tutkielmassa aloitetaan algebran ja lukuteorian kurssilla käsitellyistä määritelmistä ja edetään asteittain vaativampiin algebrallisiin rakenteisiin. Tutkielmassa käytetään kuvia ja geometriaa algebrallisten todistusten rinnalla. Lisäksi perehdytään hieman käsiteltävien aiheiden historiaan sekä tietokonelaskemiseen. Tutkielman kahdessa ensimmäisessä luvussa käydään läpi tutkielman kannalta tärkeitä tuloksia ja esitetään aritmetiikan peruslauseen todistus positiivisilla kokonaisluvuilla. Kolmas luku käsittelee Pellin yhtälöä ja neljäs luku aritmetiikan peruslauseen yleistämistä. Viidennessä luvussa tutkitaan yksikäsitteisen tekijöihinjaon epäonnistumista ja perehdytään ideaaleihin. Tuloksena saadaan yksikäsitteisen tekijöihinjaon onnistuminen renkaissa \mathbb{Z}[\sqrt{-2}] ja \mathbb{Z}[\zeta_3]. Yksikäsitteinen tekijöihinjako epäonnistuu renkaissa \mathbb{Z}[\sqrt{-3}] ja \mathbb{Z}[\sqrt{-5}]. Toisaalta renkaalle \mathbb{Z}[\sqrt{-5}] voidaan määrittää alkutekijähajotelma käyttäen alkuideaaleja, ja alkutekijähajotelma on yksikäsitteinen.fi
dc.format.extent65
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.subject.otheraritmetiikan peruslause
dc.subject.otheralgebrallisten kokonaislukujen muodostama rengas
dc.subject.otherEukleideen alue
dc.subject.otherideaali
dc.subject.otherjakoyhtälö
dc.subject.otherPellin yhtälö
dc.subject.otherpääideaalialue
dc.titleAlgebrallista lukuteoriaa : Pellin yhtälöstä ja aritmetiikan peruslauseen yleistämisestä
dc.identifier.urnURN:NBN:fi:jyu-201906203324
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysorenkaat
dc.subject.ysoalkuluvut
dc.subject.ysoalgebra
dc.subject.ysolukuteoria
dc.format.contentfulltext
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record