dc.contributor.advisor | Lehtonen, Ari | |
dc.contributor.author | Ojaniemi, Jenna | |
dc.date.accessioned | 2019-06-20T06:01:15Z | |
dc.date.available | 2019-06-20T06:01:15Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64737 | |
dc.description.abstract | Tutkielman tarkoituksena on Pellin yhtälön ratkaiseminen ja aritmetiikan peruslauseen voimassaolon tutkiminen algebrallisten kokonaislukujen muodostamissa renkaissa \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{-3}],\mathbb{Z}[\sqrt{\zeta_3}]$ ja $\mathbb{Z}[\sqrt{-5}]. Aritmetiikan peruslauseella tarkoitetaan yleisimmin positiivisten kokonaislukujen yksikäsitteistä alkulukuhajotelmaa. Pellin yhtälön ratkaisussa käytetyt tavat käsitellä algebrallisia kokonaislukuja ovat apuna aritmetiikan peruslauseen yleistämisessä muihin lukuluokkiin. Tutkielmassa tutustutaan myös ketjumurtolukujen tarjoamaan ratkaisualgoritmiin Pellin yhtälölle. Lisäksi tutkielmassa käsitellään ideaalien teoriaa, sillä jos varsinaista määritelmän mukaista yksikäsitteistä tekijöihinjakoa ei pystytä renkaalle yleistämään, voidaan alkutekijähajotelmaa tarkastella alkuideaalien avulla.
Tutkielmassa aloitetaan algebran ja lukuteorian kurssilla käsitellyistä määritelmistä ja edetään asteittain vaativampiin algebrallisiin rakenteisiin. Tutkielmassa käytetään kuvia ja geometriaa algebrallisten todistusten rinnalla. Lisäksi perehdytään hieman käsiteltävien aiheiden historiaan sekä tietokonelaskemiseen. Tutkielman kahdessa ensimmäisessä luvussa käydään läpi tutkielman kannalta tärkeitä tuloksia ja esitetään aritmetiikan peruslauseen todistus positiivisilla kokonaisluvuilla. Kolmas luku käsittelee Pellin yhtälöä ja neljäs luku aritmetiikan peruslauseen yleistämistä. Viidennessä luvussa tutkitaan yksikäsitteisen tekijöihinjaon epäonnistumista ja perehdytään ideaaleihin.
Tuloksena saadaan yksikäsitteisen tekijöihinjaon onnistuminen renkaissa \mathbb{Z}[\sqrt{-2}] ja \mathbb{Z}[\zeta_3]. Yksikäsitteinen tekijöihinjako epäonnistuu renkaissa \mathbb{Z}[\sqrt{-3}] ja \mathbb{Z}[\sqrt{-5}]. Toisaalta renkaalle \mathbb{Z}[\sqrt{-5}] voidaan määrittää alkutekijähajotelma käyttäen alkuideaaleja, ja alkutekijähajotelma on yksikäsitteinen. | fi |
dc.format.extent | 65 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | fi | |
dc.subject.other | aritmetiikan peruslause | |
dc.subject.other | algebrallisten kokonaislukujen muodostama rengas | |
dc.subject.other | Eukleideen alue | |
dc.subject.other | ideaali | |
dc.subject.other | jakoyhtälö | |
dc.subject.other | Pellin yhtälö | |
dc.subject.other | pääideaalialue | |
dc.title | Algebrallista lukuteoriaa : Pellin yhtälöstä ja aritmetiikan peruslauseen yleistämisestä | |
dc.identifier.urn | URN:NBN:fi:jyu-201906203324 | |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikan opettajankoulutus | fi |
dc.contributor.oppiaine | Teacher education programme in Mathematics | en |
dc.rights.copyright | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights.copyright | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | renkaat | |
dc.subject.yso | alkuluvut | |
dc.subject.yso | algebra | |
dc.subject.yso | lukuteoria | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |