Algebrallista lukuteoriaa : Pellin yhtälöstä ja aritmetiikan peruslauseen yleistämisestä
Authors
Date
2019Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tutkielman tarkoituksena on Pellin yhtälön ratkaiseminen ja aritmetiikan peruslauseen voimassaolon tutkiminen algebrallisten kokonaislukujen muodostamissa renkaissa \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{-3}],\mathbb{Z}[\sqrt{\zeta_3}]$ ja $\mathbb{Z}[\sqrt{-5}]. Aritmetiikan peruslauseella tarkoitetaan yleisimmin positiivisten kokonaislukujen yksikäsitteistä alkulukuhajotelmaa. Pellin yhtälön ratkaisussa käytetyt tavat käsitellä algebrallisia kokonaislukuja ovat apuna aritmetiikan peruslauseen yleistämisessä muihin lukuluokkiin. Tutkielmassa tutustutaan myös ketjumurtolukujen tarjoamaan ratkaisualgoritmiin Pellin yhtälölle. Lisäksi tutkielmassa käsitellään ideaalien teoriaa, sillä jos varsinaista määritelmän mukaista yksikäsitteistä tekijöihinjakoa ei pystytä renkaalle yleistämään, voidaan alkutekijähajotelmaa tarkastella alkuideaalien avulla.
Tutkielmassa aloitetaan algebran ja lukuteorian kurssilla käsitellyistä määritelmistä ja edetään asteittain vaativampiin algebrallisiin rakenteisiin. Tutkielmassa käytetään kuvia ja geometriaa algebrallisten todistusten rinnalla. Lisäksi perehdytään hieman käsiteltävien aiheiden historiaan sekä tietokonelaskemiseen. Tutkielman kahdessa ensimmäisessä luvussa käydään läpi tutkielman kannalta tärkeitä tuloksia ja esitetään aritmetiikan peruslauseen todistus positiivisilla kokonaisluvuilla. Kolmas luku käsittelee Pellin yhtälöä ja neljäs luku aritmetiikan peruslauseen yleistämistä. Viidennessä luvussa tutkitaan yksikäsitteisen tekijöihinjaon epäonnistumista ja perehdytään ideaaleihin.
Tuloksena saadaan yksikäsitteisen tekijöihinjaon onnistuminen renkaissa \mathbb{Z}[\sqrt{-2}] ja \mathbb{Z}[\zeta_3]. Yksikäsitteinen tekijöihinjako epäonnistuu renkaissa \mathbb{Z}[\sqrt{-3}] ja \mathbb{Z}[\sqrt{-5}]. Toisaalta renkaalle \mathbb{Z}[\sqrt{-5}] voidaan määrittää alkutekijähajotelma käyttäen alkuideaaleja, ja alkutekijähajotelma on yksikäsitteinen.
...


Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [24534]
Related items
Showing items with similar title or keywords.
-
Alkulukuja ja melkein alkulukuja
Tuononen, Minna (2011) -
Suhteellisten alkulukuparien todennäköisyys
Kosonen, Kati (2020)Tässä tutkielmassa osoitetaan, että kaksi satunnaisesti valittua kokonaislukua ovat keskenään suhteellisia alkulukuja 61% todennäköisyydellä. Tulosta lähestytään lukuteorian näkökulmasta erilaisten funktioiden ja niiden ... -
Lukuteoriaan perustuvia salausmenetelmiä
Rehn, Rasmus (2019)Tämän tutkielman tarkoitus on tutustuttaa lukija salakirjoituksen maailmaan lukuteorian näkökulmasta. Tutkielma sisältää salausmenetelmiin tarvittavat matemaattiset pohjatiedot, Diffie-Hellmanin salausmenetelmän ja ... -
Reaalianalyyttistä lukuteoriaa
Ylinen, Henri (2016)Tämän tutkielman tarkoituksena on tutustuttaa lukija Bernoullin polynomeihin, Γ-funktioon ja lukuteoreettisiin Mertensin lauseisiin. Näiden lisäksi tutkitaan erästä lukuteoreettista tuloa, ja esitellään tähän tuloon ... -
Kompleksilukujen lukuteoriaa ja lukuteoriaa kompleksiluvuilla
Lindqvist, Ellinoora (2019)Tämän tutkielman tarkoituksena on näyttää, kuinka kokonaislukujen lukuteoriaa voidaan yleistää kokonaislukujen kompleksisille laajennuksille. Lisäksi halutaan osoittaa, että tilannetta voidaan tarkastella toisestakin ...