Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2019-04-17T09:55:44Z
dc.date.available2021-05-23T21:35:09Z
dc.date.issued2019
dc.identifier.citationKärkkäinen, T. (2019). Extreme minimal learning machine : Ridge regression with distance-based basis. <i>Neurocomputing</i>, <i>342</i>, 33-48. <a href="https://doi.org/10.1016/j.neucom.2018.12.078" target="_blank">https://doi.org/10.1016/j.neucom.2018.12.078</a>
dc.identifier.otherCONVID_28917157
dc.identifier.otherTUTKAID_80638
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63523
dc.description.abstractThe extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an additional multilateration problem for the estimation of the distance-regression based output. A natural combination of these two techniques is proposed and experimented here: to use the distance-based basis characteristic in the MLM in the learning framework of the regularized ELM. In other words, we conduct ridge regression using a distance-based basis. The experimental results characterize the basic features of the proposed technique and surprisingly, indicate that overlearning with the distance-based basis is in practice avoided in classification problems. This makes the model selection for the proposed method trivial, at the expense of computational costs.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesNeurocomputing
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherrandomized learning machines
dc.subject.otherextreme learning machine
dc.subject.otherminimal learning machine
dc.subject.otherextreme minimal learning machine
dc.titleExtreme minimal learning machine : Ridge regression with distance-based basis
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201904152185
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-04-15T15:15:10Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange33-48
dc.relation.issn0925-2312
dc.relation.numberinseries0
dc.relation.volume342
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber311877
dc.relation.grantnumber315550
dc.subject.ysokoneoppiminen
dc.subject.ysoneuraalilaskenta
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7291
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.neucom.2018.12.078
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundinginformationThis work was supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI). The constructive feedback from the reviewers, improving the contents and the presentation, is sincerely acknowledged. The author is also grateful to MSc Joonas Hämäläinen for his help in carrying out the experiments reported here.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0