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Extreme minimal learning machine: Ridge regression with distance-based basis

Tommi Kärkkäinena

aUniversity of Jyvaskyla, Faculty of Information Technology, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Abstract

The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine
learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights
for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to
distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation
using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or
classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an
additional multilateration problem for the estimation of the distance-regression based output. A natural combination
of these two techniques is proposed and experimented here: to use the distance-based basis characteristic in the MLM
in the learning framework of the regularized ELM. In other words, we conduct ridge regression using a distance-based
basis. The experimental results characterize the basic features of the proposed technique and surprisingly, indicate
that overlearning with the distance-based basis is in practice avoided in classification problems. This makes the model
selection for the proposed method trivial, at the expense of computational costs.

Keywords: Randomized learning machines, Extreme learning machine, Minimal learning machine, Extreme minimal
learning machine

1. Introduction

Kernels and basis functions have a central role in ma-
chine learning. The appearance of the radial basis function
network (RBFN) in the 1980s [1–3] made it clear that uni-
versal approximation property of a neural network tech-
nique does not need a fully adaptable basis. With an a
priori fixed location and the scatter parameters of radial
basis functions, one could construct nonlinear approxima-
tors of unknown functions for regression and classification.
In the work of Kwok and Yeung [4] something similar was
suggested for the multilayered perceptron, MLP: First op-
timize all weights using the whole data and then freeze the
hidden layer weights in the nonlinear cross-validation, by
adapting only the weights in the outer layer. The ap-
proach to sequentially separate the learning of weights
in the outer and hidden layer for a single-hidden-layer-
feedforward-network (SLFN) was proposed and tested by
McLoone et al. [5] (see also [6]).

In the MLP and in deep learning [7, 8], we might have a
large pool of adaptation in the deeply layered basis. How-
ever, the extreme learning machine, ELM, as proposed by
Huang et al. [9, 10], established the key randomized neural
network framework without kernel adaptation [11]. Actu-
ally, the first step of the expectation-maximization (EM)
approach proposed in McLoone et al. [5] coincides with

Email address: tommi.karkkainen@jyu.fi (Tommi
Kärkkäinen)

the basic definition of the ELM. As explained and thor-
oughly described by Cao et al. [12], this training mecha-
nism can also be traced back to random vector functional
link (RVFL) networks [13] and Schmidt’s method [14]. The
ELM provides a simple, but still universal, approach to
nonlinear, data-based modeling through generation of the
hidden layer weights [15]. More recently, the universal ap-
proximation properties of the ELM were revisited by pre-
senting probabilistic convergence analysis [16, 17]. There,
the necessity of the repeated sampling of the sigmoidal
kernel and the advantage of the weight decay (ridge re-
gression) were concluded. ELM techniques have been used
extensively and successfully in different fields of applica-
tions [18–20].

Another novel supervised learning method with a ran-
dom basis, the minimal learning machine (MLM), was
proposed in the works of de Souza Junior et al. [21, 22].
The MLM is based on the idea of the existence of map-
ping between the geometric configurations of input-output
points. The original derivation owed much to the clas-
sical unsupervised technique of multidimensional scaling
(MDS) [23, 24]. The nonlinear geometric configuration in
the MLM is learned using a distance-based regression tech-
nique, where reference point subsets are first sampled from
input and output data. Then, two distance/dissimilarity
matrices are formed between the reference points and the
training data. For the output of any test observation, the
computed distances are used to define a multilateration
problem, of the same form as the squared stress formu-
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lation for the MDS [25], that needs to be solved. Possi-
bilities for supervised learning with missing input/feature
values [26, 27] increased interest in MLM. As described
by de Souza Junior et al. [22], the dissimilarities in the
MLM are usually computed using the Euclidean distance,
but nothing prevents using any dissimilarity measure in
a metric space for different types of data. Links between
the theory of learning with similarity functions and the
ELM were addressed in the work of Gastaldo et al. [28].
The MLM has been recently applied, for example, in hu-
man activity recognition [29] and mobile robot localization
[30, 31].

Even if the distribution in the ELM, where the hidden
layer weights are generated, and the dissimilarity measure
in the MLM define a family of methodological variants, in
principle, both the ELM and the MLM contain only one
hyperparameter: the size of the hidden layer in the ELM
or the number of reference points in the MLM. Typical
choices of this parameter are proportional to the number
of observations available in the training set [10, 22, 32, 33].

In this paper, a natural combination of the ELM and
the MLM referred to as the extreme minimal learning
achine (EMLM), is proposed and described. The tech-
nique uses a distance-based feature mapping originating
from the MLM to generate a random basis for a nonlinear
approximation of the input data. Then, similarly to the
ELM (and many other basically linear techniques [34]), the
regularized least-squares problem as in the ridge regres-
sion is solved to recover the matrix of weights to combine
the distance-based random basis. Compared to the MLM,
the solution of the multilateration problem to estimate the
actual distance-regression-based output is omitted. More-
over, in the experimental comparison of different meth-
ods in the context of classification, we use the fast nearest
neighbor (1NN) MLM as derived in [35, Section 3.1].

The rest of the paper is organized as follows. We present
the basic formulation of the EMLM based on a unified
treatment of the ELM and the MLM in Section 2. Sec-
tion 3 presents the results and immediate conclusions from
the experimental comparison of the ELM, the MLM, and
the EMLM. General conclusions and future work are out-
lined in Section 4.

2. Derivation of the extreme minimal learning ma-
chine

In this section, we first introduce the general learning
framework, the regularized least-squares optimization for-
mulation, for the extreme learning machine. We then use
this formulation to present the MLM and to derive the
EMLM as a straightforward combination of the two orig-
inal methods. Because the MLM was recently thoroughly
tested for regression in [36], we restrict ourselves to classi-
fication problems.

For this purpose, we let {xi, yi}Ni=1, xi ∈ Rn and yi ∈ Rk,
be the given training data of the input-output samples.
Here, N refers to the number of observations, n denotes

the input dimension, i.e., the number of variables, and
k the output dimension, i.e., the number of classes. For
all the formulations here, the class encoding is realized
with the 1-of-k coding scheme using the standard basis in

Rk. Let X =
[
xi

]N

i=1
∈ Rn×N and Y =

[
yi

]N

i=1
∈ Rk×N be

the matrix representations of the vector-valued inputs and
output encodings sequentially.

2.1. The ELM

In the ELM, the nonlinear random basis can be con-
structed using many kinds of feature mappings [32, 37,
38]: sigmoid nodes, radial basis nodes, threshold nodes,
trigonometric nodes, high-order polynomial nodes, wavelet
and Fourier series functions, etc. As summarized by Cao
et al. [12], in the case of an especially shallow feedforward
network with an appropriate choice (e.g., linear) of fea-
ture mapping, many core techniques in machine learning,
including support vector machines (SVMs), principal com-
ponent analysis (PCA), and random projection (RP) (see
[19, 39]), can be presented in the general learning frame-
work of the ELM.

Theoretically, the most important tenet of the ELM is
the interpolation and universal approximation capability,
as analyzed for the radial basis feature mappings in [1–3]
and derived and depicted for the ELM in [15–17, 19, 32].
More precisely, in [15] it was shown that a linear combi-
nation of either additive nodes of the form g(aT

i x + bi) or

radial basis functions g
( ‖x−ai‖

bi

)
, with randomly generated

hidden-layer weights {ai} and biases {bi} from continuous
sampling distributions, can approximate any continuous
target function. This holds true when g is a bounded,
nonconstant, piecewise continuous activation function for
the additive nodes or any integrable, piecewise continuous
activation function (with

∫
R g(x)dx , 0) for the radial basis

nodes. In this original work, the ranges of the generated
weights and biases were not restricted explicitly. In [40]
for the sigmoidal activation and more recently in [41] for
multiple activation functions, control of the magnitude of
weights and biases, for the generated basis functions to act
in the nonsaturated region of the feature space, was em-
phasized. For this work, an interesting activation function
satisfying the assumptions of universal approximation [15]

is given by the multiquadric function g = (‖x − ai‖2 + b2)
1
2

[19, 28, 32].
Another universal approximation analysis track with

random basis was given in [16, 17]. In essence, the im-
portance and consequences of the probabilistic facet of the
ELM (not visible per se when the limit behavior was an-
alyzed in previous papers as summarized above), random
generation, were now emphasized [42]. Actually, in [43], a
proof of nonconvergence for the classical incremental strat-
egy was given. The analyses in [16, 17], establishing the
average convergence bounds in probability, implied that

a) sampling in random generation is necessary because
one realization does not guarantee convergence due
to the uncertainty problem,
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b) cross-validation should be employed to determine the
number of random basis functions,

c) regularization (weight decay) techniques provide
a remedy for the generalization degradation phe-
nomenon especially with the RBF nodes, and

d) the established generalization capability is valid only
for algebraic polynomials, Nadaraya-Watson func-
tions, or sigmoidal activation functions.

The universal consistency analysis and simulated experi-
ments also supported the viability of the sigmoidal activa-
tion function [44].

Based on the results as reviewed above, we use the sig-
moidal activation function for the ELM. For this pur-
pose, let us attach for each bias-enlarged input vector
xe

i = [1 xT
i ]T ∈ Rn+1 the sigmoidal basis function

hi =
1

1 + exp(−Gxe
i )
∈ Rm, (1)

where G ∈ Rm×(n+1) with (G)i1 ∈ U([0, 1]), i = 1, . . . ,m
(the bias weights) and (G)i j ∈ U([−1, 1]), i = 1, . . . ,m; j =
2, . . . , n+1 (input weights). Here, m denotes the number of
basis functions. These choices correspond to the original
suggestions given in the ELM portal [45], although using
only U([−1, 1]) is currently the most common choice [46].

Let H =
[
hi

]N

i=1
∈ Rm×N be the matrix representation of the

generated random basis.

In the basic ELM [9, 10], one directly solves the weight
matrix W ∈ Rk×m for the linear combination of the gener-
ated basis from the identity Y 'WH, i.e.,

W = YH+,

where + denotes the pseudoinverse of H. Note that, as ar-
gued in the work of Huang [37] and Huang et al. [19], the
basic form of the ELM—or any other technique here—does
not include the bias in the hidden layer. However, our rea-
son for this choice is not generally based on the same argu-
ments as in Huang [37] but on the results from Corollary
1 in Kärkkäinen [47], Kärkkäinen and Heikkola [48]: With
the hidden layer bias, one always obtains a model with
mean error over the training data equal to zero. Even if
such a condition statistically guarantees an unbiased non-
linear regression and classification model, the zero mean
error is also a constraint that remains always valid for all
random feature mappings. We chose to avoid this for larger
data-based flexibility of the models. Actually, the explicit
condition and the corresponding constraint just described
provide concrete closure of the corresponding discussion
in Huang [37, p. 384] when referring to [49]: “existence of
bias b may result in additional constraints and make the
final solution tend to be suboptimal”.

For the formulations in this paper, let us turn our at-
tention to the other main form of learning in the ELM

by considering the regularized least-squares optimization
problem [19, 32, 47, 48]:

min
V∈Rk×m

J(V), (2)

where

J(V) =
1

2N

N∑

i=1

‖Vhi − yi‖22 +
α

2m

k∑

i=1

m∑

j=1

|Vi j|2. (3)

The coefficients 1
N and 1

m in J(V) balance the scales of the
fidelity and the regularization terms with respect to the
amount of data and the size of the basis, respectively [50].
In (3), α > 0 is the Tykhonov regularization/weight de-
cay/shrinkage/penalization parameter, which restricts the
increase in the magnitude of the weights and by enforcing
strict coercivity, guarantees the unique solvability of (3).
This technique is supported by the results in Bartlett [51],
where it was shown that a large feedforward network with
small training set error should favor small weights for im-
proved generalization. However, we will use a very small
α, so that the computational stability and uniqueness are
the essential reasons to use the regularization technique
here.

The solution W ∈ Rk×m of (2), i.e., the unique minimizer
of (3), satisfies

1
N

(WH − Y)HT +
α

m
W = 0, (4)

so it can be solved from

W
(
HHT +

αN
m

I
)
= YHT , (5)

where I ∈ Rm×m denotes the identity matrix.
To this end, for the ELM, the class of an unseen input

vector x̃ is given by the maximum component max j o j of the
k-dimensional output-vector o =Wh̃, where h̃ is computed
according to (1).

2.2. The MLM

The learning method of the minimal learning machine
is composed of the two main phases [21, 22]:

1. Construction of the distance-based regression model
and,

2. Estimation of the distance-regression based output of
an unseen test input.

For the first phase of the original MLM, the construction
of distance-based random feature mapping, let us select m
reference points R = {ri}mi=1 such that, for all i, ri = x j for
some 1 ≤ j ≤ N. Hence, R is a random subset of the set
of input vectors. Let also T = {ti}mi=1 refer to the outputs
of the corresponding reference inputs, i.e., ri 7→ ti for all
1 ≤ i ≤ m in the training data.

Using the set of reference points and the whole set of
input vectors, define the distance matrix H ∈ Rm×N as

(H)i j = ‖ri − x j‖2, i = 1, . . . ,m, j = 1, . . . ,N. (6)

3
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Similarly, define the output distance matrix Dy ∈ Rm×N as

Dy =
[
‖ti − y j‖

]
i = 1, . . . ,m, j = 1, . . . ,N. (7)

The principal assumption in the first step of the MLM is
the existence of a regression model between the distance
matrices: Dy = g(H) + E, where E denotes the residual
error and g the regression model. Assuming further that
g is linear allows one to represent it as a matrix B ∈ Rm×m,
which can be estimated in a similar fashion as in (4)–(5)
using regularized ordinary-least-squares [36, 52]:

B =
(
HHT + αI

)−1
HDT

y . (8)

Again, α > 0 guarantees the unique solvability of (8) be-
cause the outer-product matrix HHT is always at least pos-
itive semidefinite [53].

For the derivation of the second step in the original
MLM, let x̃ be an unseen input vector whose MLM-output
is to be estimated. The output of the first step gives the
distance vector δT ∈ Rm satisfying the identity

δ =
[
‖x̃ − ri‖

]m

i=1
B.

These distances are then used to define the multilatera-
tion problem [23, 25], again in the form of a least-squares
problem:

ỹ∗ = argminJ(ỹ),

where

J(ỹ) =
m∑

i=1

(
‖ỹ − ti‖2 − δ2

i

)2
. (9)

The minimizer of (9) provides the output vector of the
MLM, whose maximum component determines the class
label of x̃. As described in [22], one can apply many nonlin-
ear optimization solvers in (9). Moreover, the second-order
Newton’s method with a special initialization strategy was
suggested and experimented in [36].

As far as the author is aware, no universal approxima-
tion results for the MLM exist. Compared to the ELM,
there are two main differences in the construction, which
makes analysis of the universal approximation capability
also different from the ELM. Namely, a) the distance-based
basis computed during the first phase of the MLM is not
random in the sense of the random generation of {wi, bi}
for the ELM [15, Definition 11.2]; b) the set of reference
points is selected from the training set and therefore, can
only provide information available there and not from a
continuous sampling distribution as in the ELM. This in-
formation is ‘nonlinearized’ in the MLM through the lift to
the distance regression, whose results are used to interpo-
late the actual MLM output vector and the corresponding
class label during the second phase. For universal approx-
imation, the role of both phases in the construction of the
MLM output should be understood and analyzed.

Because we confine ourselves to the classification prob-
lems here, we eventually choose to use the efficient fast

Algorithm 1 TrainMLM - Training phase of the MLM.

Input: Input-output-class label data {xi, yi, li}Ni=1,
number of reference points m, and regularization parame-
ter α.
Output: Set of reference points {ri}mi=1 and their class la-
bels {li}mi=1, distance regression weights B ∈ Rm×m.

1. Select m reference points {ri}mi=1 from X
and store corresponding labels {li}mi=1

2. Compute H from (6) and Dy from (7)

3. Solve B from (8)

Algorithm 2 ApplyMLM - Classification phase of the
MLM.
Input: Reference points {ri}mi=1, reference labels {li}mi=1,
weight matrix B ∈ Rm×m, and a set of new inputs X̃ = {x̃i}Mi=1
Output: Set of labels {l̃i}Mi=1 for X̃

1. Compute the distance regression matrix H̃ = BA ∈
Rm×M, where

(A)i j = ‖ri − x̃ j‖2, i = 1, . . . ,m, j = 1, . . . ,M

2. Seek the minimum indices Ji = argmin1≤ j≤m(h̃i) j

3. Set l̃ j = l(J j), j = 1, . . . ,M

MLM nearest neighbor-based solution method in the sec-
ond phase of the MLM, as described in the work of
Mesquita et al. [35, Section 3.1]. Instead of minimizing (9)
for the 1-of-k coding scheme, Mesquita et al. [35] showed
that it is sufficient to search the minimum component of
the distance vector δ and recover the label of the corre-
sponding output reference point. Since its introduction,
the fast MLM has been favorably compared to many other
techniques in the works of Marinho et al. [30, 31]. The
overall fast MLM classification method with the training
and application phases are depicted in Algorithms 1 and
2.

In relation to the ELM, the computational costs of the
training phase of the MLM are comparable: We need to
create two matrices and solve one linear problem whereas
the sigmoidal activation needs to be computed and a sim-
ilar m × m linear problem solved with the ELM. However,
the fast MLM needs more memory compared to the ELM,
because of the m ×m matrix B compared to the k ×m ma-
trix W. Moreover, the second phase of the original MLM
with the repeated solution of the multilateration problem
is computationally more involved compared to the ELM,
and so is the fast MLM: It contains larger matrix com-
putations and searches the best indices during Step 2 of
Algorithm 2 from m-dimensional vectors instead of the k-
dimensional outputs of the ELM. In summary, even the
fast MLM will be a computationally more expensive clas-
sifier compared to the ELM.
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Algorithm 3 TrainEMLM - Training phase of the EMLM.

Input: Input-output data X = {xi, yi}Ni=1, number of refer-
ence points m, and regularization parameter α.
Output: Set of reference points {ri}mi=1 and output weights
W ∈ Rk×m

1. Select m reference points {ri}mi=1 from X
2. Compute H using formula (6)

3. Solve W from (5)

Algorithm 4 ApplyEMLM - Classification phase of the
EMLM.

Input: Reference points {ri}mi=1, weight matrix W ∈ Rk×m,
and a set of new inputs X̃ = {x̃i}Mi=1
Output: Set of labels {li}Mi=1 for X̃

1. Compute the distance matrix H̃ ∈ Rm×M as

(H̃)i j = ‖ri − x̃ j‖2, i = 1, . . . ,m, j = 1, . . . ,M

2. li = argmax1≤ j≤k (oi) j for oi =Wh̃i

2.3. The EMLM

A method referred to as the extreme minimal learning
machine (EMLM) is obtained when distance-based feature
mapping (6) is used with regularized ELM satisfying (5).
The two main algorithms of the resulting method, training
and classification of new instances, are depicted in Algo-
rithms 3 and 4. Note that in practice, with a training
data with inputs and their labels, the class encoding with
the 1-of-k coding scheme for the output matrix Y should
be computed in the beginning of Algorithm 3. All three
methods need such a step, so it will have no effect on the
comparison of the computational costs.

Let us comment on the proposed method. The basic
ingredient is that the sigmoidal transformation of input
vectors in the ELM is replaced with the distance-based
feature mapping underlying the MLM. The only metapa-
rameter, m (when confined to the Euclidean distance; also
other choices are possible [22, 30, 31]), refers to the number
of reference points. Compared to the ELM and the MLM,
the nonlinearity in (6) is not based on any transformation
with a nonlinear function as in the ELM or the lift to the
level of distance regression as in the MLM. Thus, it will
be interesting to experiment with the consequences of this
choice in the learning capability of the new method (cf.
[54]).

The components of the derived EMLM method are close
to those of the ELM with the multiquadric activation
function, because of the input-vector distance calculations.
However, these two methods are not the same: With the
ELM, we have random generation of the hidden weights
{ai, bi}, and in the EMLM, bi = 0 and {ai}’s correspond
to the chosen set of reference points. Moreover, simi-
larly to the ELM [e.g., 37, formula (10)], the solution to

the least-squares learning problem in the EMLM without
hidden-layer bias coincides with the least-squares support
vector machine (SVM) to solve the Lagrange multipliers
[55]. Also along the lines of the terminology popularized
by the SVM, computation of the distance matrix in (6) is
realization of a similarity function, a kernel [56], using the
selected set of reference points. Hence, the kernel trick of
the EMLM is to use the distance in the original space and
not to visit a higher dimensional space as in the SVM.

As can be seen from Algorithms 3 and 4, the compu-
tational costs of the EMLM with random selection of the
reference points are close to those of the ELM. The sec-
ond stage, i.e., actual classification of test data, should
be faster for the EMLM compared to the fast MLM be-
cause less storage is needed for the data structures to be
passed from the training phase to the application phase.
Again similarly to the ELM, much lower-dimensional vec-
tors need to be processed with the EMLM to detect the
final class compared to the MLM. In essence, the storage
and computational costs of the basic EMLM outperform
those of the MLM.

Selection of the reference inputs for the MLM in regres-
sion problems, by using the clustering initialization algo-
rithm from Gonzalez [57], was suggested and experimented
in [36]. This method, referred as RS-maxmin, provides a
completely deterministic selection strategy of the reference
points. Namely, the observation closest to the data mean
is chosen as the first reference point. Then, a new observa-
tion that has the largest distance to the already chosen set
of reference points is added to this set until the number of
reference points, m, is reached. To carry out a more ver-
satile comparison of the ELM, the MLM, and the EMLM,
we choose to use the RS-maxmin for the reference point
selection with the EMLM. Methodologically, the purpose
is to stabilize further the randomness of the EMLM and
assess the properties of the resulting algorithm. Use of
RS-maxmin will introduce additional computational costs
in Step 1 of Algorithm 3.

Fig. 1. Illustration of the EMLM with the Overlap dataset.
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Remark 1. The structure of the EMLM—linear combi-
nation of the distance-based feature mapping—coincides
with the basic form of the radial basis function network
(RBFN) with linear kernel [58, 59]. Also the use of the
regularized least-squares learning framework to determine
the weights was mentioned in [58], although not in the form
as defined in (3). For RBFN, centers that correspond to
the reference points according to the MLM terminology are
typically selected randomly or by using clustering, usually
k-means [60]. In this respect, the use of RS-maxmin is
both novel and computationally more efficient.

The structural correspondence between the EMLM and
RBFN means that the universal approximation properties
proved to the latter model, e.g., in [58, 59, 61], are also
valid to the EMLM. Hence, in combination with the re-
sults presented in Sections 2.1 and 2.2, we conclude that
both ELM and EMLM posses universal approximation ca-
pability, which has not been established for MLM.

To this end, the capability of creating disjoint and non-
linear class boundaries using the EMLM technique is illus-
trated in Fig. 1. Using the training set of the 2-dimensional
dataset ’Overlap’ (see Table 1), after min-max scaling into
[0, 1], we first applied Algorithm 3 with 1000 reference
points and the RS-maxmin selection. Then Algorithm 4
was applied for the test data covering [0, 1] × [0, 1] uni-
formly with grid size h = 1

50 . In Fig. 1, the class labels are
illustrated with different colors.

3. Experimental results

Reference versions of the techniques in Section 2 were
implemented with Matlab (version R2015b). As explained,
the output vectors were formed using 1-of-k encoding, and
we selected α =

√
ε, where ε is the machine epsilon (of the

order 10−16), was fixed throughout. In preprocessing, we
removed the constant variables and min-max scaled all fea-
tures into [0, 1]. Compared to the initial assessments pre-
sented in [62], the stability problems in training for larger
values of m with the MLM and the EMLM were omitted
by using left division and Gaussian elimination instead of
forming the explicit inverse for solving (5) and (8) (note
that left division and explicit inversion are included as op-
tions by Huang [45]).

The datasets for the tests mostly originate from the
UCI machine learning repository [63]. Only datasets
with the availability of an independent validation set
were considered. Typically, the class frequencies in the
training and validation sets were consistent, i.e., ap-
proximately of the same size (±0 − 3%). However,
the ‘CrowdSource’ dataset [64] provides a severe excep-
tion with the training set class frequency percentages of
[13.7 70.5 4.2 9.2 0.5 1.9], but the validation set frequency
percentages [17.7 26.0 12.0 13.3 15.7 15.3]. Thus, higher
accuracy in the validation set does not imply a better clas-
sifier per se. For proper treatments of such a discrepancy,
one should apply the classwise weighting method in the

Table 1
Description of test datasets. (∗ = Constant input features removed)

Dataname N NV n k R-MCP

COIL 1 800 5 400 20∗ 100 3.5 [66]
Outdoor 2 400 1 600 21 40 28.6 [66]
Optdigits 3 823 1 797 61∗ 10 2.0 [67]
Overlap 3 960 990 2 4 16.3 [66]
HumActRec 4 252 1 492 561 6 0.3 [68]
Satimage 4 435 2 000 36 6 11.0 [20]
USPS 7 291 2 007 256 10 4.4 [66]
Isolet 6 238 1 559 617∗ 26 3.3 [66]
CrowdSource 10 545 300 28 6 28.0 [64]
Letter 16 000 4 000 16 26 2.9 [66]
MNIST 60 000 10 000 666∗ 10 1.5 [66]

learning problem as suggested by Kärkkäinen [47, Section
3.4.4] and Huang et al. [19, Section 4.4].

Because of the incremental flavor of the MLM and the
EMLM and for comparison, we used many of the same
datasets as in the works of Losing et al. [65, 66]. The
datasets are described in Table 1. There, N denotes the
number of training observations and NV the number of
validation observations; n refers to the dimension of the
input data vectors; k provides the number of classes; and
‘R-MCP’ presents a reference classification accuracy result
as MisClassifications in Percentages (MCP) with a citation
to the work from where it was retrieved. More specifically,
the reference results from Losing et al. [66] are given ac-
cording to Table 3/Setting 1, for ‘Optdigits’ from Alpaydin
and Kaynak [67] (1NN), for ‘HumActRec’ from Davis et al.
[68], for ‘Satimage’ from Ding et al. [20] based on Table 4,
and for ‘CrowdSource’ from Johnson and Iizuka [64] using
Table 4.

Note that the reference results cannot be treated as pre-
cise benchmark values because they have been obtained
using different comparison frameworks with different er-
ror computation formulae (e.g., the mean error over 10
repetitions [66]). Classification results, in general and for
random basis, can be improved with careful feature selec-
tion [69], class imbalance management [70], robustness to
outliers [33, 48, 71], rigorous architecture design [72], clas-
sification task simplification using one-versus-all or one-
versus-one binarization approaches [73–75] etc.; see the
works of Huang et al. [19], Ding et al. [20]. These tech-
niques were not used here, and therefore, the reference
results simply provide some basic level of classification ac-
curacy in the separate validation set.

The main goals of the experiments for comparisons of
the three methods were to

i) evaluate the training set classification accuracies to as-
sess and verify the discrete universal approximation
properties (cf. [54]),

ii) study the generalization potential by investigating the
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best validation set classification accuracies,

iii) consider the determination of the metaparameter m,
and

iv) compare the experimental computational complexity
using CPU times.

Concerning the last point, the experiments reported here
were computed using many laptops and workstations with
single processors (2.6–2.8 GHz). Therefore, the CPU times
are comparable only individually and separately for each
dataset and not between the different datasets or different
scenarios described in Sections 3.1 and 3.2. Moreover, es-
pecially when comparing the ELM and the EMLM, we are
essentially assessing the efficiency of the implementations
of the exp- and pdist2-functions in Matlab.

In the tests, we applied an incremental strategy for the
values of the metaparameter m by grid searching 1% to
100% portions of the training data. More precisely, the
initial m was set to b0.01 · Nc and then incremented with
the stepsize b0.01 · Nc up to, at most, N. In the cross-
validation tests in Section 3.2, the largest value of m was
restricted to the smallest size of the 10 training sets (c.
b0.9 · Nc).

Figs. 3–23 given at the end of the paper illustrate
the experimental behavior of the methods for most of
the datasets, omitting ‘Outdoor’, ‘Satimage’, ‘USPS’, and
‘Letter’. Multiple figures are included because i) there is
common behavior in the experiments for different datasets,
but ii) the commonalities are not encapsulated on a dataset
basis but on the overall experimental and comparative
level.

3.1. Training and validation set accuracy with full training

We first explain the basic setting for the experiments
with the full data and then state and discuss the results.

3.1.1. Setting

We focus on experimental goals i) and ii) by studying
the universal approximation capability, i.e., how well the
training set can be learned, and the relations between the
training and validation set accuracies. The experimen-
tal results are summarized in Table 2, where ‘m’ denotes
the value of the metaparameter. ‘TrMCP’ refers to the
MCP error in the training set and ‘VaMCP’ in the valida-
tion set, respectively. For ‘VaMCP’, m corresponds to the
smallest overall error, and for ‘TrMCP’, to the first value
when the training set MCP-error was below 0.1 (i.e., more
than 99.9% classification accuracy). If the latter condition
was not reached during the training, then the minimum
value and the corresponding size of m were reported. For
the MLM and the EMLM, we also included in the column
‘VaLst’ the validation set MCP error for the last, largest
model that utilizes the whole training data (m = N). Fi-
nally, ‘CPU’ presents the total computing time in seconds
for training the corresponding model.

3.1.2. Results

One can conclude from Table 2 that both the MLM and
the EMLM are able to learn to classify the training set
accurately. This is not a trivial result for a random basis
with a particular learning framework. It also underlines
that the regularization of the least-squares problems as
defined in (3) and (8) does not disable the universal ap-
proximation capability of the fast MLM or the EMLM.
However, the training of the ELM failed for ‘COIL’, ‘Out-
door’, and ‘Overlap’, on the grounds of the best training
and validation set errors. These three datasets all have
fewer features than the number of target classes.

The behavior of the training and validation set MCP
errors for ‘COIL’ and ‘Overlap’ are depicted in Figs. 3
and 9, respectively (‘Outdoor’ behaves visually similarly
to ‘COIL’). Qualitatively, Fig. 3 also illustrates the typical
form of the exponential decay of the training error with
small values of m for all methods. However, the smallest
dimensional dataset ‘Overlap’ is also a significant excep-
tion for the MLM and the EMLM: It is the only case where
the best validation set error was obtained for both meth-
ods (see Table 2) with a relatively small value of m, with a
slight increase in the validation error for the larger values
of m. Interestingly, this exception can be seen in the form
of the decrease in the training error: After a knee point
[76], a linear decrease instead of an exponential decay is
visible.

As shown in Table 2 and in the corresponding figures
that compare the training and validation set errors, except
for ‘Overlap’, the large training set classification accuracy
and the best validation set error level for the MLM and the
EMLM are typically obtained with a large value of m, close
to the maximum value N. Moreover, as can be seen by
comparing columns ‘VaMCP’ and ‘VaLst’, the validation
error level with the distance-based basis does not increase
when m is increased. There is again a slight exception to
this general behavior provided by ‘CrowdSource’, but as
explained above, the incompatibility between the training
and validation set characteristics preclude interpreting this
as a real counterexample.

For the ELM, we witnessed in all other cases than ‘Over-
lap’ (where the ELM training failed) overlearning in the
form of a clear increase in the validation error when m was
increased sufficiently. With ‘COIL’ and especially with
‘CrowdSource’, this happened very early. Moreover, the
best validation errors obtained with the ELM were always
larger compared to the MLM and the EMLM, which were
very close to each other in all reasonable cases. This does
not mean that the MLM and the EMLM dominate the
ELM as classification techniques, but that the ELM was
the greediest technique in learning, needing a better ar-
chitecture design to choose the size of the hidden layer m
more accurately than in the experiments here.

When comparing the best and last validation set results
with the MLM and the EMLM to the reference values in
the last column of Table 1, one concludes that typically
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similar error levels were obtained. For ‘Optdigits’ the re-
sult was better than the original 1NN results reported with
the dataset itself in [67]. However, for ‘HumActRec’ the
results obtained were much worse than reported in the
work of Davis et al. [68]. In the original work the ben-
efits of using a binary classifier (there, SVM) with one-
versus-all (OVA) strategy were pointed out. Because of
this, the potential of the OVA approach was also briefly
experimented. The result obtained, for the binary problem
to separate class 1 from the rest with ‘HumActRec’, was
that the MLM and the EMLM scored only a 3.2% MCP
error level in this case.

This last point (and the choice of m = N for the MLM
and the EMLM) was also studied further by using the
larger human activity dataset from Anguita et al. [73] (see
also [74, 75]) with N = 7352, n = 561, k = 6 training data,
and NV = 2947 validation data. For this dataset, the train-
ing and validation set class frequencies were balanced and
consistent. The benchmark MCP error rate as reported
in the work of Anguita et al. [73] was 4.0%, obtained with
OVA-SVM. When this original training data was used with
m = N, the MLM and the EMLM reached only 13% MCP
error. But again, for the binary problem to separate class 1
from the rest, the error rate with m = N readily decreased
into 1.9% for the MLM and the EMLM.

3.2. Metaparameter selection

We first explain the basic setting for the experiments
with the cross-validation and then state and discuss the
results.

3.2.1. Setting

We consider experimental goal iii) next. In the prelim-
inary tests of the EMLM in [62], we used the leave-one-
out cross-validation (LOO-CV) technique with the efficient
TR-PRESS implementation [77] to identify the only meta-
parameter, m, needed in all the techniques. These exper-
iments were not successful. Thus, instead of the LOO we
tested the CV with the classical choice of 10 folds [78].
For the maximum similarity between the data subsets in
folding, the distribution optimally balanced stratified CV
(DOB-SCV) [79, 80] is applied, with the implementation
described by Kärkkäinen [81].

The difficulties noted in [62] could also be due to the
observations given in [81]: The cross-validation error, i.e.,
the mean over the test fold errors [34, 78], and the valida-
tion set error do not posses a high correlation for the dis-
crete MCP error measure. Therefore, as suggested in [81],
Mean-Root-Squared (MRS) error was used to compute the
test errors in the folds. However, by construction, the fast
MLM estimates only the labels in the test set, so that the
cross-validation error for the MLM is still computed as the
mean over the MCP errors in the folds.

Cross-validation results are given in Table 3. There,
‘TsMRS’ refers to the smallest MRS CV-error with the
corresponding value of m. Similarly, ‘VaMRS’ with m indi-
cates the smallest value of mean validation error, where for

each m the MRS errors of the 10 different trained models on
the whole validation set have been computed and averaged.
The correlation coefficient ‘Cor’ between all ‘TsMRS’ and
‘VaMRS’, i.e., for all values of m is also reported. Again,
‘CPU’ presents the total computing time in seconds for
training the individual models. In the cross-validation ex-
periment, the dataset ‘MNIST’ was searched only up to
half of the size of the training data.

3.2.2. Results

First, we notice that the exceptional learning behavior
of the dataset ‘Overlap’, as discussed in Section 3.1, is
also visible in Fig. 10 (right), which is the only case for
the MLM CV error with a clear increase for larger values
of m.

As with the LOO-CV in [62], the 10-fold CV had diffi-
culty identifying the best model structure. These are best
illustrated with the ELM which tends to overlearn. Except
for ‘Overlap’ and ‘Letter’, also the CV error reflected this
for the ELM with a clear increase for larger values of the
size of the hidden layer. The values of m for the smallest
validation error ‘VaMCP’ when the whole training data
were explored in Table 2 and the two errors in Table 3,
‘TsMRS’ and ‘VaMRS’, for the ELM, are all different for
all datasets. The differences in the values are so large that
they cannot be explained with a coarse search grid of the
values of m.

For the MLM, the best validation MCP errors in Ta-
ble 2 and the CV MCP errors in Table 3 are very close.
Most of the suggested values of m in Table 3 are large and
consistent with Table 2, except for ‘CrowdSource’. For the
EMLM, this behavior is even more stable, so that ‘TsMRS’
and ‘VaMRS’ suggest and support the use of the largest
possible m. In Fig. 11, we see that even for ‘Overlap’, the
CV error and the mean validation error for the EMLM are
smallest for the largest m (although the validation error
increases in the middle range).

The smoothing effect of taking the mean of the test or
validation set errors is illustrated in Tables 2 and 3 when
comparing the ‘VaMCP’ and ‘VaMRS’ values for the sta-
ble techniques MLM and EMLM. With them, the CV-
related error figures typically show decreasing trends for
the CV and validation errors. With also the averaged vali-
dation error, the best m is high and always close to N. For
COIL, the CV-error ‘CVTs’ for the MLM and the EMLM
in Figs. 4 (right) and 5 is slightly larger, for ‘Overlap’
in Figs. 10 (right) and 11 about the same, for ‘MNIST’
with all three methods in Figs. 22 and 23 (left) exactly
the same, but for all other datasets (cf. the correspond-
ing figures) clearly smaller than the mean validation error
‘CVVa’. The notable exception is ‘Isolet’, where the CV
and validation MCP errors with the MLM coincide, as sup-
ported by the corresponding correlation coefficient in Ta-
ble 3. Very large deviations between the testing and valida-
tion CV errors were witnessed for ‘HumActRec’, ‘USPS’,
and ‘Crowdsource’, the last one as expected.

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 2. Relative CPU times for all datasets.

3.3. Experimental computational complexity

Next, we consider and conclude the experiments in rela-
tion to goal iv). The computing times for the three meth-
ods are given in Tables 2 and 3 in column ‘CPU’. There,
the ELM is the fastest method to train, usually 2-5 times
faster than the MLM. One cannot state a definite ranking
between the training speeds of the MLM and the EMLM,
as they are close to each other with varying order in indi-
vidual datasets.

However, we can have two scenarios concerning the CPU
time of the EMLM, when the RS-maxmin reference point
selection method is used. In the tests reported thus far, the
RS-maxmin algorithm was always run from the scratch.
In this scenario, the experiments with different values of
m are assumed to be completely independent from each
other. Then, the CPU time for the EMLM, even with lower
memory and computational requirements compared to the
MLM as explained in Section 2, does not fully capitalize
this potential advantage. However, if the experimental sce-
nario corresponded to the incremental search of the value
of m, then also the deterministic RS-maxmin—sorting in-
dices of the observations for the reference point selec-
tion—could be realized as a one-shot method. This is ob-
tained when running the whole algorithm only once for the
whole data and then picking a subset of size m from this
result for individual runs.

With the latter scenario just explained, we repeated the
experiments in Table 2 (for MNIST only up to N/2 simi-
larly to Table 3), including the RS-maxmin CPU time in
the CPU time of the EMLM. This experiment was carried
out on 64-bit Windows 10 Enterprise, with 2.8 GHz CPU
and 32 GB RAM. The results are shown in the bar plot in
Fig. 2 where the CPU time of the ELM has been normal-
ized to unity by dividing the CPU times of all three meth-

ods by that of the ELM for each dataset individually. This
experiment confirms that the ELM is the fastest method to
train. The EMLM can be 2–4 times slower than the ELM
for datasets with a large number of features, affecting the
costs of the distance computation, but of similar computa-
tional complexity for smaller-dimensional problems. The
MLM is the most expensive classification technique, taking
3–6 times more CPU time compared to the ELM.

However, the computing time and the complexity of
learning are put into a completely different perspective
when we notice the results from the previous section: The
EMLM especially does not need a grid search of m because
the whole training data can be used for the distance-based
regression model without overlearning. The CPU times of
this approach can be compared to those of the ELM, when
the ELM can reach a comparable validation set classifica-
tion accuracy in Table 2. More precisely, with ’Optdig-
its’ (for m = 1365) and ’USPS’ (for m = 2044) the ELM
obtained a VaMPC error similar to the EMLM with the
whole data. Thus, we repeated these experiments with a
restricted maximum for the ELM and the whole data for
the EMLM. We obtained the following results:

1. ’Optdigits’ (m = 39 − 1365 for the ELM): ELM-CPU
= 4.6 (VaMPC = 1.6), EMLM-CPU = 6.1 (VaMPC
= 1.2)

2. ’USPS’ (m = 73−2044 for the ELM): ELM-CPU = 13
(VaMPC = 5.3), EMLM-CPU = 87 (VaMPC = 4.4)

This small experiment concluded that the ELM with a grid
search is computationally more efficient than the EMLM
with the whole data. As expected, the performance ratio
becomes larger for larger datasets. However, the values of
VaMPC obtained in this single experiment also illustrate
the variability of the results for the ELM (when there was
no repeated sampling as suggested in [16, 17]): We did
not obtain as good VaMPC values now as in the original
tests reported in Table 2. This prevents us from presenting
definite conclusions about the computational efficiencies of
the ELM and the EMLM.

3.4. Summary of the experimental results

In all tests, we noticed smoother behavior of the error
curves for the EMLM compared to the MLM (and espe-
cially to the ELM). Compared to the MLM, this was be-
cause of the use of the stable and deterministic method
RS-maxmin for selecting the reference points. Moreover,
based on the correlation coefficients in Table 3, the EMLM
was the most consistent technique by means of the relation
with the CV and the mean validation error; only for ‘Over-
lap’ and ‘CrowdSource’ was the correlation coefficient not
unity by two decimal places. In this direction, the ELM is
the most unstable of the techniques, scoring even two large
negative correlations coefficients with ‘COIL’ and ‘Out-
door’.

With the CV error, the EMLM always outperformed the
ELM by scoring smaller MRS error values, as shown in
Table 3. However, the comparisons showed that for any of
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the techniques, the 10-fold DOB-SCV was not completely
reliable for estimating the generalization error as witnessed
in a separate validation set. Thus, this result should not be
judged exactly. However, the best mean validation errors
for the EMLM were better than those of the ELM. But
again, especially for larger and erroneous datasets, this
reflects also the sparsity of the search grid for the values
of m for the ELM.

‘COIL’, ‘Outdoor’, ‘Overlap’, and ‘Letter’ are the four
datasets with more classes than input features. For these
datasets, the results were not as good as the reference re-
sults given in Table 1. In addition, we observed many
forms of inconsistent behavior in the experiments as de-
picted in Figs. 3, 4, and 5 for ‘COIL’ and in Figs. 9, 10,
and 11 for ‘Overlap’. Note that in these cases one can-
not guarantee that the unknown class separation mapping
from Rn to Rk is surjective or, therefore, bijective. This
seems to negatively affect to all techniques tested here.
Thus, incremental and active learning techniques focusing
on the necessary subset of observations, as thoroughly ex-
perimented in the work of Losing et al. [66], seem better
choices for such problems.

With ‘Optdigits’ and ‘Satimage’, we obtained better re-
sults than that for the reference. The reference for ‘Opt-
digits’ was given with a very basic 1NN technique but for
‘Satimage’ with the ELM. However, with ‘HumActRec’
the results were much worse than the reference result. But
the reason was probably the advantage of using the one-
versus-all approach with an ensemble of binary classifiers.
In addition, for ‘CrowdSource’, the reference results were
much better than the ones here, but conclusions with this
dataset should be made cautiously (or completely omitted)
because of the class frequency incompatibility between the
training and validation sets. Such cases call for transfer
learning based approaches [82]. The error figures for these
datasets are illustrated in Figs. 6, 7, and 8 (‘Optdigits’);
12, 13, and 14 (‘HumActRec’); and 18, 19, and 20 (‘Crowd-
Source’).

For the larger image classification datasets ‘USPS’, ‘Iso-
let’, and ‘MNIST’, with hundreds of features to separate
some tens of classes, we obtained results that either agreed
with or were slightly better than the reference results given
in Table 1. Such cases seem to be a good setting for ran-
dom basis techniques. The error figures for these datasets
are illustrated in Figs. 15, 16, and 17 (‘Isolet’) and 21, 22,
and 23 (‘MNIST’).

4. Conclusions and future work

In this work, a combination of two scalable machine
learning techniques, the extreme learning machine and
the minimal learning machine, with randomly generated
basis was proposed. The straightforward idea was to
use the distance-based feature mapping from the MLM
in an ELM-like regularized least-squares learning frame-
work. According to the original nomenclature, the pro-

posed method was referred as the extreme minimal learn-
ing machine, EMLM.

Results indicate that the distance-based random basis is
a viable option for random feature mapping in regularized
learning. The EMLM with the deterministic RS-maxmin
selection of the reference points had a more stable learn-
ing curve compared to the ELM or the MLM. The pure
random generation of basis without resampling implied
some variability of the learning curves for the ELM and
the MLM, but this did not prevent the convergence (cf.
[16, 17]), especially for the MLM. For the ELM, we em-
phasize that the basic learning framework that was applied
here provides only a reference: Better control of the gen-
erated feature mapping to act in the nonsaturated region
[28, 40, 41] and rigorous architecture design [72, 83] would
provide better performance for the technique.

Surprisingly, the majority of the experimental results,
for the fast MLM and especially for the EMLM, suggest
that there is no overlearning in training for these two tech-
niques. Thus, the whole training data with m = N is an
appropriate choice of reference points without any other
search or determination algorithm. This choice yields
to a parameter-free machine learning method (with the
Euclidean distance), making the training of the EMLM
straightforward and very simple; see Algorithms 3 and 4.

As in the previous results [81], the accuracy of the
approximation of the generalization error with a cross-
validation technique, for the MCP error and the MRS er-
ror, was not perfect. We witnessed overestimation but
mostly underestimation of the mean validation error by
the mean test fold, i.e., the CV error. Because the folds
in the CV were balanced using DOB-SCV, this may indi-
cate, also for datasets other than ‘CrowdSource’, that the
training and validation set characteristics, especially class
distributions, are not completely compatible in the tested
datasets, which originate from real measurements.

The fact that the underestimation happened for ‘COIL’,
the only dataset with a clearly larger validation set com-
pared to the training set, suggests that difference in the
sizes of the training and validation sets might cause such a
discrepancy. We tested this point further by re-running the
cross-validation test for ‘COIL’ with the interchanged roles
of the training and validation sets (i.e., taking N = 5400
and NV = 1800). The result of this test for the EMLM is
illustrated in Fig. 5 (right). The mean validation error is
approximated very accurately, and this held true for the
MLM as well, with practically exact agreement (visualiza-
tion not included). Another test in the same direction was
done with ’MNIST’, by using Dob-SCV to define a 20%
sample of the original training data. The CV error and
the mean validation error for this case are illustrated in
Fig. 23 (right). We see similar behavior, overestimation
of the mean validation error, as in the original test with
’COIL’. This result supports the hypothesis that the rela-
tion between the sizes of the training and validation sets
affects the accuracy of the CV error. This indicates that
further tests for the accuracy of the cross-validation tech-
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nique should be carried out with different divisions into
training and validation sets.

Many other directions exist for future research with the
proposed techniques. With distance-based feature map-
ping, one could apply other shrinkage methods in addi-
tion to regularized least-squares (or ridge regression) to
control the complexity of the linear combination of basis
[34]. In this direction, sparsity favoring methods [50] could
and should be applied and experimented. Moreover, one
could test different combinations of the distance-based and
sigmoidal transformations to construct ”more vivid” ran-
dom feature mappings. On one hand, a sequential version
would be to apply the sigmoidal transformation to the
distance matrix (with some scaling because of the non-
negativity of distances). A parallel combination, on the
other hand, would be similar to the structure of the ELM
as proposed in the work of Akusok et al. [84]: to first ex-
tend the feature vectors (or some reduced combination,
e.g., using the principal components [53], of them) with
sigmoidal transformation and then use these enlargements
together with the original features in distance-based re-
gression calculations.
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[80] V. López, A. Fernández, F. Herrera, On the importance of the
validation technique for classification with imbalanced datasets:
Addressing covariate shift when data is skewed, Information
Sciences 257 (2014) 1–13.
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Fig. 3. COIL: training errors (left) and validation errors (right).

Fig. 4. COIL: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 5. COIL: cross-validation and mean validation errors for EMLM (left) and with training and validation set interchanged (right).
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Fig. 6. Optdigits: training errors (left) and validation errors (right).

Fig. 7. Optdigits: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 8. Optdigits: cross-validation and mean validation errors for EMLM.
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Fig. 9. Overlap: training errors (left) and validation errors (right).

Fig. 10. Overlap: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 11. Overlap: cross-validation and mean validation errors for EMLM.
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Fig. 12. HumActRec: training errors (left) and validation errors (right).

Fig. 13. HumActRec: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 14. HumActRec: cross-validation and mean validation errors for EMLM.
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Fig. 15. Isolet: training errors (left) and validation errors (right).

Fig. 16. Isolet: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 17. Isolet: cross-validation and mean validation errors for EMLM.
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Fig. 18. CrowdSource: training errors (left) and validation errors (right).

Fig. 19. CrowdSource: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 20. CrowdSource: cross-validation and mean validation errors for EMLM.
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Fig. 21. MNIST: training errors (left) and validation errors (right).

Fig. 22. MNIST: cross-validation and mean validation errors for ELM (left) and MLM (right).

Fig. 23. MNIST: cross-validation and mean validation errors for EMLM: up to N/2 (left) and with 20% sample of N = 12005 (right).
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