Feature selection for distance-based regression : An umbrella review and a one-shot wrapper
Linja, J., Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2023). Feature selection for distance-based regression : An umbrella review and a one-shot wrapper. Neurocomputing, 518, 344-359. https://doi.org/10.1016/j.neucom.2022.11.023
Julkaistu sarjassa
NeurocomputingPäivämäärä
2023Oppiaine
TekniikkaComputing Education ResearchTutkintokoulutusKoulutusteknologia ja kognitiotiedeHuman and Machine based Intelligence in LearningTietotekniikkaEngineeringComputing Education ResearchDegree EducationLearning and Cognitive SciencesHuman and Machine based Intelligence in LearningMathematical Information TechnologyTekijänoikeudet
© 2022 The Authors. Published by Elsevier B.V.
Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised machine learning models. In this paper, FS for the recently introduced distance-based supervised machine learning model is considered for regression problems. The study is contextualized by first providing an umbrella review (review of reviews) of recent development in the research field. We then propose a saliency-based one-shot wrapper algorithm for FS, which is called MAS-FS. The algorithm is compared with a set of other popular FS algorithms, using a versatile set of simulated and benchmark datasets. Finally, experimental results underline the usefulness of FS for regression, confirming the utility of certain filter algorithms and particularly the proposed wrapper algorithm.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0925-2312Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/160101260
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Muut, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
This work has been supported by the Academy of Finland through the projects 315550 (HNP-AI) and 351579 (MLNovCat). We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (FCCI; persistent identifier urn:nbn:fi:research-infras-2016072533).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
Hämäläinen, Joonas; Kärkkäinen, Tommi (ESANN, 2020)Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test ... -
Feature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems : A Machine Learning Perspective
Liefooghe, Arnaud; Verel, Sébastien; Chugh, Tinkle; Fieldsend, Jonathan; Allmendinger, Richard; Miettinen, Kaisa (Springer, 2023)We consider the application of machine learning techniques to gain insights into the effect of problem features on algorithm performance, and to automate the task of algorithm selection for distance-based multi- and ... -
How can algorithms help in segmenting users and customers? : A systematic review and research agenda for algorithmic customer segmentation
Salminen, Joni; Mustak, Mekhail; Sufyan, Muhammad; Jansen, Bernard J. (Palgrave Macmillan, 2023)What algorithm to choose for customer segmentation? Should you use one algorithm or many? How many customer segments should you create? How to evaluate the results? In this research, we carry out a systematic literature ... -
Memory-saving optimization algorithms for systems with limited hardware
Iacca, Giovanni (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.