Counting and equidistribution in Heisenberg groups
Parkkonen, J., & Paulin, F. (2017). Counting and equidistribution in Heisenberg groups. Mathematische Annalen, 367(1), 81-119. https://doi.org/10.1007/s00208-015-1350-5
Julkaistu sarjassa
Mathematische AnnalenPäivämäärä
2017Tekijänoikeudet
© Springer-Verlag Berlin Heidelberg 2016
We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension 2. We prove a Mertens formula for the integer points over a quadratic imaginary number fields K in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over K in Heisenberg groups. We give a counting formula for the cubic points over K in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over K, and a counting and equidistribution result for arithmetic chains in the Heisenberg group when their Cygan diameter tends to 0.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-5831Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25537394
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Werner Heisenberg fysiikan tukijana
Lindstedt, Markus (2001) -
Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces
Le Donne, Enrico; Li, Sean; Rajala, Tapio (Oxford University Press; London Mathematical Society, 2017)We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in Fractured fractals and broken dreams by David and Semmes, or equivalently, Question 22 and hence also Question 24 in ... -
Dimension comparison and H-regular surfaces in Heisenberg groups
Arvila, Miro (2024)In this thesis we study a specific Carnot group which is the $n$-th Heisenberg group $\mathbb{H}^n = (\mathbb{R}^{2n+1}, \ast)$. Carnot groups are simply connected nilpotent Lie groups whose Lie algebra admits a stratification. ... -
A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group
Adamowicz, Tomasz; Fässler, Katrin; Warhurst, Ben (Springer, 2020)We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group H1. Several auxiliary properties of quasiconformal mappings between subdomains ... -
Intrinsic rectifiability via flat cones in the Heisenberg group
Julia, Antoine; Nicolussi Golo, Sebastiano (Scuola Normale Superiore - Edizioni della Normale, 2022)We give a geometric criterion for a topological surface in the first Heisenberg group to be an intrinsic Lipschitz graph, using planar cones instead of the usual open cones.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.