Rigidity, counting and equidistribution of quaternionic Cartan chains
Parkkonen, J., & Paulin, F. (2022). Rigidity, counting and equidistribution of quaternionic Cartan chains. Annales Mathematiques Blaise Pascal, 28(1), 45-69. https://doi.org/10.5802/ambp.399
Published in
Annales Mathematiques Blaise PascalDate
2022Discipline
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsCopyright
© 2022 the Authors
In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.
Publisher
Universite Clermont AuvergneISSN Search the Publication Forum
1259-1734Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/103972506
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Counting and equidistribution in quaternionic Heisenberg groups
Parkkonen, Jouni; Paulin, Frédéric (Cambridge University Press (CUP), 2022)We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Space of signatures as inverse limits of Carnot groups
Le Donne, Enrico; Züst, Roger (EDP Sciences, 2021)We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing ... -
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
Fisher, Nate; Nicolussi Golo, Sebastiano (De Gruyter, 2021)We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group. We develop ...