Rigidity, counting and equidistribution of quaternionic Cartan chains
Parkkonen, J., & Paulin, F. (2022). Rigidity, counting and equidistribution of quaternionic Cartan chains. Annales Mathematiques Blaise Pascal, 28(1), 45-69. https://doi.org/10.5802/ambp.399
Julkaistu sarjassa
Annales Mathematiques Blaise PascalPäivämäärä
2022Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© 2022 the Authors
In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.
Julkaisija
Universite Clermont AuvergneISSN Hae Julkaisufoorumista
1259-1734Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103972506
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
Integral binary Hamiltonian forms and their waterworlds
Parkkonen, Jouni; Paulin, Frédéric (American Mathematical Society (AMS), 2021)We give a graphical theory of integral indefinite binary Hamiltonian forms f analogous to the one by Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order O in a ... -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.