Show simple item record

dc.contributor.authorParkkonen, Jouni
dc.contributor.authorPaulin, Frédéric
dc.date.accessioned2019-04-05T06:41:23Z
dc.date.available2019-04-05T06:41:23Z
dc.date.issued2017fi
dc.identifier.citationParkkonen, J., & Paulin, F. (2017). Counting and equidistribution in Heisenberg groups. <em>Mathematische Annalen</em>, 367 (1), 81-119. <a href="https://doi.org/10.1007/s00208-015-1350-5">doi:10.1007/s00208-015-1350-5</a>fi
dc.identifier.otherTUTKAID_69122
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63406
dc.description.abstractWe strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension 2. We prove a Mertens formula for the integer points over a quadratic imaginary number fields K in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over K in Heisenberg groups. We give a counting formula for the cubic points over K in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over K, and a counting and equidistribution result for arithmetic chains in the Heisenberg group when their Cygan diameter tends to 0.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesMathematische Annalen
dc.rightsIn Copyright
dc.subject.otherHeisenberg groupsfi
dc.titleCounting and equidistribution in Heisenberg groupsfi
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201904012016
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikka
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-04-01T12:15:08Z
dc.description.reviewstatuspeerReviewed
dc.format.pagerange81-119
dc.relation.issn0025-5831
dc.relation.numberinseries1
dc.relation.volume367
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag Berlin Heidelberg 2016
dc.rights.accesslevelopenAccessfi
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s00208-015-1350-5


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright